Menu Close

evaluate-0-J-z-e-zt-z-2-2-dz-R-0-0-J-z-e-zt-z-i-z-i-dz-1-2-i-0-J-z-e-zt-z-i-dz-1-2-i-0-J-




Question Number 220116 by SdC355 last updated on 06/May/25
evaluate  ∫_0 ^( ∞)   ((J_ν (z)e^(−zt) )/(z^2 +α^2 )) dz , α∈R\{0}  ∫_0 ^( ∞)   ((J_ν (z)e^(−zt) )/((z+iα)(z−iα))) dz=  −(1/(2αi)) ∫_0 ^( ∞)    ((J_ν (z)e^(−zt) )/(z+αi)) dz+(1/(2αi)) ∫_0 ^( ∞)   ((J_ν (z)e^(−zt) )/(z−αi)) dz  .....
$$\mathrm{evaluate} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({z}\right){e}^{−{zt}} }{{z}^{\mathrm{2}} +\alpha^{\mathrm{2}} }\:\mathrm{d}{z}\:,\:\alpha\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({z}\right){e}^{−{zt}} }{\left({z}+\boldsymbol{{i}}\alpha\right)\left({z}−\boldsymbol{{i}}\alpha\right)}\:\mathrm{d}{z}= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}\alpha\boldsymbol{{i}}}\:\int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{{J}_{\nu} \left({z}\right){e}^{−{zt}} }{{z}+\alpha\boldsymbol{{i}}}\:\mathrm{d}{z}+\frac{\mathrm{1}}{\mathrm{2}\alpha\boldsymbol{{i}}}\:\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({z}\right){e}^{−{zt}} }{{z}−\alpha\boldsymbol{{i}}}\:\mathrm{d}{z} \\ $$$$….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *