Menu Close

1-0-cos-ln-z-1-z-dz-




Question Number 220177 by SdC355 last updated on 07/May/25
∫_(−1) ^( 0)   cos(((ln(z+1))/z)) dz
$$\int_{−\mathrm{1}} ^{\:\mathrm{0}} \:\:\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right)\:\mathrm{d}{z} \\ $$
Answered by MathematicalUser2357 last updated on 11/May/25
cos(((ln(z+1))/z))  =0.183457+1.20658(z−0.5)−3.31429(z−0.5)^2 +13.4993(z−0.5)^3 …  =…+13.4993z^3 −23.5632z^2 +14.6453z−2.93582  Integration gives …+3.374825z^4 −7.8544z^3 +7.32265z^2 −2.93582z+C  Definite integral gives (By calculation function)  −(3.374825×(−1)^4 −7.8544×(−1)^3 +7.32265×(−1)^2 −2.93582×(−1))  −21.487695 (Calculated by taylor series)
$$\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right) \\ $$$$=\mathrm{0}.\mathrm{183457}+\mathrm{1}.\mathrm{20658}\left({z}−\mathrm{0}.\mathrm{5}\right)−\mathrm{3}.\mathrm{31429}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}} +\mathrm{13}.\mathrm{4993}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{3}} \ldots \\ $$$$=\ldots+\mathrm{13}.\mathrm{4993}{z}^{\mathrm{3}} −\mathrm{23}.\mathrm{5632}{z}^{\mathrm{2}} +\mathrm{14}.\mathrm{6453}{z}−\mathrm{2}.\mathrm{93582} \\ $$$$\mathrm{Integration}\:\mathrm{gives}\:\ldots+\mathrm{3}.\mathrm{374825}{z}^{\mathrm{4}} −\mathrm{7}.\mathrm{8544}{z}^{\mathrm{3}} +\mathrm{7}.\mathrm{32265}{z}^{\mathrm{2}} −\mathrm{2}.\mathrm{93582}{z}+{C} \\ $$$$\mathrm{Definite}\:\mathrm{integral}\:\mathrm{gives}\:\left(\mathrm{By}\:\mathrm{calculation}\:\mathrm{function}\right) \\ $$$$−\left(\mathrm{3}.\mathrm{374825}×\left(−\mathrm{1}\right)^{\mathrm{4}} −\mathrm{7}.\mathrm{8544}×\left(−\mathrm{1}\right)^{\mathrm{3}} +\mathrm{7}.\mathrm{32265}×\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}.\mathrm{93582}×\left(−\mathrm{1}\right)\right) \\ $$$$−\mathrm{21}.\mathrm{487695}\:\left(\mathrm{Calculated}\:\mathrm{by}\:\mathrm{taylor}\:\mathrm{series}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *