Menu Close

Question-220286




Question Number 220286 by Tawa11 last updated on 10/May/25
Commented by Tawa11 last updated on 10/May/25
perimeter of semi circle interms of π
$$\mathrm{perimeter}\:\mathrm{of}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{interms}\:\mathrm{of}\:\pi \\ $$
Commented by fantastic last updated on 10/May/25
Commented by fantastic last updated on 10/May/25
Here △ABO∼△ACD  ∴((AB)/(AD))=((AO)/(CD))=((BO)/(AC))  ((25)/(2r))=(r/( (√((2r)^2 −(32)^2 ))))  r=((5(√(50−2i(√(399)))))/2)  ∴perimeter=πr+2r  =π(r+((2r)/π))  =π(5(√(50−2i(√(399))))/2+((5(√(50−2i(√(399)))))/π))u
$${Here}\:\bigtriangleup{ABO}\sim\bigtriangleup{ACD} \\ $$$$\therefore\frac{{AB}}{{AD}}=\frac{{AO}}{{CD}}=\frac{{BO}}{{AC}} \\ $$$$\frac{\mathrm{25}}{\mathrm{2}{r}}=\frac{{r}}{\:\sqrt{\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left(\mathrm{32}\right)^{\mathrm{2}} }} \\ $$$${r}=\frac{\mathrm{5}\sqrt{\mathrm{50}−\mathrm{2}{i}\sqrt{\mathrm{399}}}}{\mathrm{2}} \\ $$$$\therefore{perimeter}=\pi{r}+\mathrm{2}{r} \\ $$$$=\pi\left({r}+\frac{\mathrm{2}{r}}{\pi}\right) \\ $$$$=\pi\left(\mathrm{5}\sqrt{\mathrm{50}−\mathrm{2}{i}\sqrt{\mathrm{399}}}/\mathrm{2}+\frac{\mathrm{5}\sqrt{\mathrm{50}−\mathrm{2}{i}\sqrt{\mathrm{399}}}}{\pi}\right){u} \\ $$
Commented by fantastic last updated on 10/May/25
i am not sure if it is right or not
$${i}\:{am}\:{not}\:{sure}\:{if}\:{it}\:{is}\:{right}\:{or}\:{not} \\ $$$$ \\ $$
Commented by Tawa11 last updated on 10/May/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 10/May/25
((25)/R)=((2R)/(25+7))  ⇒R=(√((25(25+7))/2))=20  P=(2+π)R=20(2+π)
$$\frac{\mathrm{25}}{{R}}=\frac{\mathrm{2}{R}}{\mathrm{25}+\mathrm{7}} \\ $$$$\Rightarrow{R}=\sqrt{\frac{\mathrm{25}\left(\mathrm{25}+\mathrm{7}\right)}{\mathrm{2}}}=\mathrm{20} \\ $$$${P}=\left(\mathrm{2}+\pi\right){R}=\mathrm{20}\left(\mathrm{2}+\pi\right) \\ $$
Commented by fantastic last updated on 10/May/25
sir how can you say that ((AO)/(AD))=((AB)/(AC))
$${sir}\:{how}\:{can}\:{you}\:{say}\:{that}\:\frac{{AO}}{{AD}}=\frac{{AB}}{{AC}} \\ $$
Commented by mr W last updated on 10/May/25
ΔAOB∼ΔACD  ⇒((AB)/(AO))=((AD)/(AC)), i.e. ((25)/R)=((2R)/(25+7))
$$\Delta{AOB}\sim\Delta{ACD} \\ $$$$\Rightarrow\frac{{AB}}{{AO}}=\frac{{AD}}{{AC}},\:{i}.{e}.\:\frac{\mathrm{25}}{{R}}=\frac{\mathrm{2}{R}}{\mathrm{25}+\mathrm{7}} \\ $$
Commented by fantastic last updated on 10/May/25
Commented by Tawa11 last updated on 10/May/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by fantastic last updated on 11/May/25
sorry I was wrong
$${sorry}\:{I}\:{was}\:{wrong} \\ $$
Commented by mr W last updated on 11/May/25
Answered by Spillover last updated on 10/May/25
2R=V(25+7)²+(25²-7²) .  R = 40÷2 .  P=(2*pi*20)/2+40 .         20*pi+40 .
2R=V(25+7)²+(25²-7²) .
R = 40÷2 .
P=(2*pi*20)/2+40 .
20*pi+40 .
Answered by Spillover last updated on 10/May/25

Leave a Reply

Your email address will not be published. Required fields are marked *