Menu Close

Question-220321




Question Number 220321 by SdC355 last updated on 11/May/25
Commented by MathematicalUser2357 last updated on 11/May/25
한국인이세요? 대답하실거면 제 댓글 위에 있는 점 세 개를 누르고 Plain Text Comment 이라는 버튼을 눌러서 대답해 주세요
Commented by SdC355 last updated on 11/May/25
네 한국인이요 ㅋㅋㅋ방가요
Answered by SdC355 last updated on 11/May/25
Q1. can a {∞} be a limit point in a  Real Set R or Extended Real Set R^� =R∪{−∞,∞} ??  Q2. Does lim_(n→∞)  (1+(1/a_n ))^a_n  ≠e Exist For a_n  with lim_(n→∞)  a_n =∞
$$\mathrm{Q1}.\:\mathrm{can}\:\mathrm{a}\:\left\{\infty\right\}\:\mathrm{be}\:\mathrm{a}\:\mathrm{limit}\:\mathrm{point}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{Real}\:\mathrm{Set}\:\mathbb{R}\:\mathrm{or}\:\mathrm{Extended}\:\mathrm{Real}\:\mathrm{Set}\:\hat {\mathbb{R}}=\mathbb{R}\cup\left\{−\infty,\infty\right\}\:?? \\ $$$$\mathrm{Q2}.\:\mathrm{Does}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{a}_{{n}} }\right)^{{a}_{{n}} } \neq{e}\:\mathrm{Exist}\:\mathrm{For}\:{a}_{{n}} \:\mathrm{with}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} =\infty \\ $$
Commented by MrGaster last updated on 12/May/25
Commented by MrGaster last updated on 12/May/25

Leave a Reply

Your email address will not be published. Required fields are marked *