Menu Close

Question-220474




Question Number 220474 by Rojarani last updated on 13/May/25
Commented by Ghisom last updated on 13/May/25
a_n =2−(1/(n^2 +(√(n^4 +(1/4)))))=  =4n^2 +2−2(√(4n^4 +1))  ⇒  (√a_n )=(√(2n^2 +2n+1))−(√(2n^2 −2n+1))  (√a_(n+1) )=(√(2n^2 +6n+5))−(√(2n^2 +2n+1))  ⇒  S_n =Σ_(n=1) ^k  (√a_n ) =(√(2k^2 +2k+1))−1  S_(20) =28
$${a}_{{n}} =\mathrm{2}−\frac{\mathrm{1}}{{n}^{\mathrm{2}} +\sqrt{{n}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{4}}}}= \\ $$$$=\mathrm{4}{n}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{4}{n}^{\mathrm{4}} +\mathrm{1}} \\ $$$$\Rightarrow \\ $$$$\sqrt{{a}_{{n}} }=\sqrt{\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}}−\sqrt{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{1}} \\ $$$$\sqrt{{a}_{{n}+\mathrm{1}} }=\sqrt{\mathrm{2}{n}^{\mathrm{2}} +\mathrm{6}{n}+\mathrm{5}}−\sqrt{\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${S}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\:\sqrt{{a}_{{n}} }\:=\sqrt{\mathrm{2}{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}}−\mathrm{1} \\ $$$${S}_{\mathrm{20}} =\mathrm{28} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *