Menu Close

Show-that-0-e-st-t-2-1-dt-1-2-pi-H-0-s-Y-0-s-s-R-0-




Question Number 220652 by SdC355 last updated on 17/May/25
Show that  ∫_0 ^( ∞)  (e^(−st) /( (√(t^2 +1)))) dt=(1/2)π(H_0 ^  (s)−Y_0 (s)) , s∈R\{0}
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{st}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{t}=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\boldsymbol{\mathrm{H}}_{\mathrm{0}} ^{\:} \left({s}\right)−{Y}_{\mathrm{0}} \left({s}\right)\right)\:,\:{s}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *