Menu Close

Question-220656




Question Number 220656 by Tawa11 last updated on 17/May/25
Commented by Tawa11 last updated on 17/May/25
Find the area of shaded.
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{shaded}. \\ $$
Answered by Ghisom last updated on 17/May/25
the big circle has radius r  y=(√(r^2 −x^2 ))  with x=−2 we get y=(√(r^2 −4)) which is  2 times the radius of the small circle  we now have big quarter circle minus  small circle:  ((πr^2 )/4)−π(((√(r^2 −4))/2))^2 =((πr^2 )/4)−((π(r^2 −4))/4)=π
$$\mathrm{the}\:\mathrm{big}\:\mathrm{circle}\:\mathrm{has}\:\mathrm{radius}\:{r} \\ $$$${y}=\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\mathrm{with}\:{x}=−\mathrm{2}\:\mathrm{we}\:\mathrm{get}\:{y}=\sqrt{{r}^{\mathrm{2}} −\mathrm{4}}\:\mathrm{which}\:\mathrm{is} \\ $$$$\mathrm{2}\:\mathrm{times}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{small}\:\mathrm{circle} \\ $$$$\mathrm{we}\:\mathrm{now}\:\mathrm{have}\:\mathrm{big}\:\mathrm{quarter}\:\mathrm{circle}\:\mathrm{minus} \\ $$$$\mathrm{small}\:\mathrm{circle}: \\ $$$$\frac{\pi{r}^{\mathrm{2}} }{\mathrm{4}}−\pi\left(\frac{\sqrt{{r}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\pi{r}^{\mathrm{2}} }{\mathrm{4}}−\frac{\pi\left({r}^{\mathrm{2}} −\mathrm{4}\right)}{\mathrm{4}}=\pi \\ $$
Commented by Tawa11 last updated on 17/May/25
Thanks sir, I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 17/May/25
R=radius of big circle  r=radius of small circle  (R+2r)(R−2r)=2^2   R^2 −4r^2 =2^2   shaded area=((πR^2 )/4)−πr^2 =(π/4)(R^2 −4r^2 )=π
$${R}={radius}\:{of}\:{big}\:{circle} \\ $$$${r}={radius}\:{of}\:{small}\:{circle} \\ $$$$\left({R}+\mathrm{2}{r}\right)\left({R}−\mathrm{2}{r}\right)=\mathrm{2}^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} \\ $$$${shaded}\:{area}=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}−\pi{r}^{\mathrm{2}} =\frac{\pi}{\mathrm{4}}\left({R}^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \right)=\pi \\ $$
Commented by mr W last updated on 17/May/25
it makes no sense to assume 45°.  why not 40°, 48° or any other angle?  if you assume 45°, then the small  circle should be exactly of the same  size as the square.
$${it}\:{makes}\:{no}\:{sense}\:{to}\:{assume}\:\mathrm{45}°. \\ $$$${why}\:{not}\:\mathrm{40}°,\:\mathrm{48}°\:{or}\:{any}\:{other}\:{angle}? \\ $$$${if}\:{you}\:{assume}\:\mathrm{45}°,\:{then}\:{the}\:{small} \\ $$$${circle}\:{should}\:{be}\:{exactly}\:{of}\:{the}\:{same} \\ $$$${size}\:{as}\:{the}\:{square}. \\ $$
Commented by Tawa11 last updated on 17/May/25
Please draw lines sir.  I appreciate sir.
$$\mathrm{Please}\:\mathrm{draw}\:\mathrm{lines}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 17/May/25
Commented by mr W last updated on 17/May/25
DC=R+2r  CB=R−2r  ((AC)/(CB))=((DC)/(AC))  ⇒DC×CB=AC^2   ⇒(R+2r)(R−2r)=2^2
$${DC}={R}+\mathrm{2}{r} \\ $$$${CB}={R}−\mathrm{2}{r} \\ $$$$\frac{{AC}}{{CB}}=\frac{{DC}}{{AC}} \\ $$$$\Rightarrow{DC}×{CB}={AC}^{\mathrm{2}} \\ $$$$\Rightarrow\left({R}+\mathrm{2}{r}\right)\left({R}−\mathrm{2}{r}\right)=\mathrm{2}^{\mathrm{2}} \\ $$
Commented by fantastic last updated on 17/May/25
I though like this at first
$${I}\:{though}\:{like}\:{this}\:{at}\:{first} \\ $$
Commented by Tawa11 last updated on 17/May/25
Wow, thank you sir.
$$\mathrm{Wow},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 17/May/25
Is the information sufficient to find  R and r  separately?
$$\mathrm{Is}\:\mathrm{the}\:\mathrm{information}\:\mathrm{sufficient}\:\mathrm{to}\:\mathrm{find} \\ $$$$\mathrm{R}\:\mathrm{and}\:\mathrm{r}\:\:\mathrm{separately}? \\ $$
Commented by Tawa11 last updated on 17/May/25
How can I set up an equation to find  R and r  separately sir.
$$\mathrm{How}\:\mathrm{can}\:\mathrm{I}\:\mathrm{set}\:\mathrm{up}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{find} \\ $$$$\mathrm{R}\:\mathrm{and}\:\mathrm{r}\:\:\mathrm{separately}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 17/May/25
Sir,  Is  AC  =  OC ?
$$\mathrm{Sir}, \\ $$$$\mathrm{Is}\:\:\mathrm{AC}\:\:=\:\:\mathrm{OC}\:? \\ $$
Commented by mr W last updated on 17/May/25
no, that is not given! it doesn′t look  so either. the small circle doesn′t  tangent OC!
$${no},\:{that}\:{is}\:{not}\:{given}!\:{it}\:{doesn}'{t}\:{look} \\ $$$${so}\:{either}.\:{the}\:{small}\:{circle}\:{doesn}'{t} \\ $$$${tangent}\:{OC}! \\ $$
Commented by Tawa11 last updated on 17/May/25
ohh.  I assumed 45°  like    tan 45  =  (2/(∣OC∣))  ∴     ∣OC∣  =  2  ∣OC∣  =  2r,      2  =  2r        r  =  1
$$\mathrm{ohh}. \\ $$$$\mathrm{I}\:\mathrm{assumed}\:\mathrm{45}° \\ $$$$\mathrm{like}\:\:\:\:\mathrm{tan}\:\mathrm{45}\:\:=\:\:\frac{\mathrm{2}}{\mid\mathrm{OC}\mid} \\ $$$$\therefore\:\:\:\:\:\mid\mathrm{OC}\mid\:\:=\:\:\mathrm{2} \\ $$$$\mid\mathrm{OC}\mid\:\:=\:\:\mathrm{2r}, \\ $$$$\:\:\:\:\mathrm{2}\:\:=\:\:\mathrm{2r} \\ $$$$\:\:\:\:\:\:\mathrm{r}\:\:=\:\:\mathrm{1} \\ $$
Commented by Tawa11 last updated on 17/May/25
Commented by Tawa11 last updated on 17/May/25
Commented by Tawa11 last updated on 17/May/25
Am I right sir?
$$\mathrm{Am}\:\mathrm{I}\:\mathrm{right}\:\mathrm{sir}? \\ $$
Commented by Tawa11 last updated on 17/May/25
Thanks sir.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 17/May/25
following two figures fulfill also  the condition:
$${following}\:{two}\:{figures}\:{fulfill}\:{also} \\ $$$${the}\:{condition}: \\ $$
Commented by Tawa11 last updated on 17/May/25
I got it, thanks sir.    R  =  2(√2)      and     r  =  1
$$\mathrm{I}\:\mathrm{got}\:\mathrm{it},\:\mathrm{thanks}\:\mathrm{sir}. \\ $$$$ \\ $$$$\mathrm{R}\:\:=\:\:\mathrm{2}\sqrt{\mathrm{2}}\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\mathrm{r}\:\:=\:\:\mathrm{1} \\ $$
Commented by mr W last updated on 17/May/25
what do you think? can you determine  x and y, when it is only known that   y^2 −x^2 =4?
$${what}\:{do}\:{you}\:{think}?\:{can}\:{you}\:{determine} \\ $$$${x}\:{and}\:{y},\:{when}\:{it}\:{is}\:{only}\:{known}\:{that}\: \\ $$$${y}^{\mathrm{2}} −{x}^{\mathrm{2}} =\mathrm{4}? \\ $$
Commented by mr W last updated on 18/May/25
Commented by Tawa11 last updated on 17/May/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Commented by mr W last updated on 18/May/25
in both cases the circles are very  different, but the shaded areas are  equal.
$${in}\:{both}\:{cases}\:{the}\:{circles}\:{are}\:{very} \\ $$$${different},\:{but}\:{the}\:{shaded}\:{areas}\:{are} \\ $$$${equal}. \\ $$
Answered by fantastic last updated on 17/May/25
Commented by fantastic last updated on 17/May/25
Let the radius of the bigger circle be R  AO=R ,AB=2(I forgot to mention the point)  ∴OB=(√((AO)^2 −(AB)^2 =))(√(R^2 −2^2 ))=(√(R^2 −4))  So P Q=(√(R^2 −4))  Area of the smaller circle=π(((√(R^2 −4))/2))^2 ...(i)  Area of the quarter circle=(1/4)π(R)^2 ...(ii)  Area of the shaded region=(ii)−(i)  (1/4)πR^2 −π((R^2 −4)/4)=(1/4)π(R^2 −R^2 +4)=(1/4)π×4=π✓
$${Let}\:{the}\:{radius}\:{of}\:{the}\:{bigger}\:{circle}\:{be}\:{R} \\ $$$${AO}={R}\:,{AB}=\mathrm{2}\left({I}\:{forgot}\:{to}\:{mention}\:{the}\:{point}\right) \\ $$$$\therefore{OB}=\sqrt{\left({AO}\right)^{\mathrm{2}} −\left({AB}\right)^{\mathrm{2}} =}\sqrt{{R}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }=\sqrt{{R}^{\mathrm{2}} −\mathrm{4}} \\ $$$${So}\:{P}\:{Q}=\sqrt{{R}^{\mathrm{2}} −\mathrm{4}} \\ $$$${Area}\:{of}\:{the}\:{smaller}\:{circle}=\pi\left(\frac{\sqrt{{R}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)^{\mathrm{2}} …\left({i}\right) \\ $$$${Area}\:{of}\:{the}\:{quarter}\:{circle}=\frac{\mathrm{1}}{\mathrm{4}}\pi\left({R}\right)^{\mathrm{2}} …\left({ii}\right) \\ $$$${Area}\:{of}\:{the}\:{shaded}\:{region}=\left({ii}\right)−\left({i}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\pi{R}^{\mathrm{2}} −\pi\frac{{R}^{\mathrm{2}} −\mathrm{4}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}\pi\left({R}^{\mathrm{2}} −{R}^{\mathrm{2}} +\mathrm{4}\right)=\frac{\mathrm{1}}{\mathrm{4}}\pi×\mathrm{4}=\pi\checkmark \\ $$
Commented by Tawa11 last updated on 17/May/25
Thanks sir.  I really appreciate
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *