Menu Close

Question-220700




Question Number 220700 by universe last updated on 17/May/25
Answered by Frix last updated on 17/May/25
a_0 =(√6)+(√3)+(√2)  a_1 =(√3)  a_2 =−2+(√3)  a_3 =−2+((√3)/3)  a_4 =−2−((√3)/3)  a_5 =a_3   a_6 =a_5   ⇒    n≥2:  { ((a_(2n−1) =−2+((√3)/2))),((a_(2n) =−2−((√3)/2))) :}
$${a}_{\mathrm{0}} =\sqrt{\mathrm{6}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} =\sqrt{\mathrm{3}} \\ $$$${a}_{\mathrm{2}} =−\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$${a}_{\mathrm{3}} =−\mathrm{2}+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${a}_{\mathrm{4}} =−\mathrm{2}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${a}_{\mathrm{5}} ={a}_{\mathrm{3}} \\ $$$${a}_{\mathrm{6}} ={a}_{\mathrm{5}} \\ $$$$\Rightarrow \\ $$$$ \\ $$$${n}\geqslant\mathrm{2}:\:\begin{cases}{{a}_{\mathrm{2}{n}−\mathrm{1}} =−\mathrm{2}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\\{{a}_{\mathrm{2}{n}} =−\mathrm{2}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *