Menu Close

Question-220874




Question Number 220874 by Spillover last updated on 20/May/25
Commented by Spillover last updated on 20/May/25
Commented by Spillover last updated on 20/May/25
its n!  not n
$${its}\:{n}!\:\:{not}\:{n} \\ $$
Answered by Rasheed.Sindhi last updated on 21/May/25
((n!)/((n−r)!r!))+((n!)/((n−r+1)!(r−1)!))  =((n!)/((n−r)! ×r×(r−1)!))+((n!)/((n−r+1)(n−r)!(r−1)!))  =((n!)/((n−r)! (r−1)!))((1/r)+(1/(n−r+1)))  =((n!)/((n−r)! (r−1)!))(((n−r+1+r)/(r(n−r+1))))  =((n!)/((n−r)! (r−1)!))(((n+1)/(r(n−r+1))))  =(((n+1)!)/(r!(n−r+1)!))  =(((n+1)!)/((n+1−r)!r!))  = (((n+1)),((    r)) )
$$\frac{{n}!}{\left({n}−{r}\right)!{r}!}+\frac{{n}!}{\left({n}−{r}+\mathrm{1}\right)!\left({r}−\mathrm{1}\right)!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:×{r}×\left({r}−\mathrm{1}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{1}\right)!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{n}−{r}+\mathrm{1}}\right) \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{{n}−{r}+\mathrm{1}+{r}}{{r}\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{{n}+\mathrm{1}}{{r}\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$=\frac{\left({n}+\mathrm{1}\right)!}{{r}!\left({n}−{r}+\mathrm{1}\right)!} \\ $$$$=\frac{\left({n}+\mathrm{1}\right)!}{\left({n}+\mathrm{1}−{r}\right)!{r}!} \\ $$$$=\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *