Question Number 220874 by Spillover last updated on 20/May/25

Commented by Spillover last updated on 20/May/25

Commented by Spillover last updated on 20/May/25

$${its}\:{n}!\:\:{not}\:{n} \\ $$
Answered by Rasheed.Sindhi last updated on 21/May/25

$$\frac{{n}!}{\left({n}−{r}\right)!{r}!}+\frac{{n}!}{\left({n}−{r}+\mathrm{1}\right)!\left({r}−\mathrm{1}\right)!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:×{r}×\left({r}−\mathrm{1}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{1}\right)!} \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{n}−{r}+\mathrm{1}}\right) \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{{n}−{r}+\mathrm{1}+{r}}{{r}\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$=\frac{{n}!}{\left({n}−{r}\right)!\:\left({r}−\mathrm{1}\right)!}\left(\frac{{n}+\mathrm{1}}{{r}\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$=\frac{\left({n}+\mathrm{1}\right)!}{{r}!\left({n}−{r}+\mathrm{1}\right)!} \\ $$$$=\frac{\left({n}+\mathrm{1}\right)!}{\left({n}+\mathrm{1}−{r}\right)!{r}!} \\ $$$$=\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\:{r}}\end{pmatrix} \\ $$