Menu Close

Solve-for-x-and-y-3-x-3-y-4-3-x-3-y-4-3-




Question Number 220854 by fantastic last updated on 20/May/25
Solve for x   and    y  3^x +3^y =4,  3^(−x) +3^(−y ) =(4/3)
$${Solve}\:{for}\:{x}\:\:\:{and}\:\:\:\:{y} \\ $$$$\mathrm{3}^{{x}} +\mathrm{3}^{{y}} =\mathrm{4},\:\:\mathrm{3}^{−{x}} +\mathrm{3}^{−{y}\:} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Answered by SdC355 last updated on 20/May/25
if x=1 , y=0   3^1 +3^0 =4 , 3^(−1) +3^(−0) =(4/3)  x=0 , y=1  3^0 +3^1 =4 , 3^(−0) +3^(−1) =(4/3)  ∴(1,0) or (0,1)
$$\mathrm{if}\:{x}=\mathrm{1}\:,\:{y}=\mathrm{0}\: \\ $$$$\mathrm{3}^{\mathrm{1}} +\mathrm{3}^{\mathrm{0}} =\mathrm{4}\:,\:\mathrm{3}^{−\mathrm{1}} +\mathrm{3}^{−\mathrm{0}} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${x}=\mathrm{0}\:,\:{y}=\mathrm{1} \\ $$$$\mathrm{3}^{\mathrm{0}} +\mathrm{3}^{\mathrm{1}} =\mathrm{4}\:,\:\mathrm{3}^{−\mathrm{0}} +\mathrm{3}^{−\mathrm{1}} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\therefore\left(\mathrm{1},\mathrm{0}\right)\:\mathrm{or}\:\left(\mathrm{0},\mathrm{1}\right) \\ $$
Commented by fantastic last updated on 20/May/25
 Can you answer it without guessing
$$\:{Can}\:{you}\:{answer}\:{it}\:{without}\:{guessing} \\ $$
Commented by fantastic last updated on 20/May/25
3^x +3^y =4 ... (1)            3^(−x) +3^(−y) =(4/3) ...(2)  from (2) (1/3^x )+(1/3^y )=(4/3)  or (1/((4−3^y )))+(1/3^y )=(4/3)                (3^x +3^y =4 ∴3^x =4−3^y )  or ((3^y +4−3^y )/((4−3^y )3^y ))=(4/3)  or (4/(−3^(2y) +4.3^y ))=(4/3)  or −(3^y )^2 +4.3^y =3  or −(3^y )^2 +4.3^y −3=0  or −{(3^y )^2 −4.3^y +3}=0  or (3^y )^2 −4.(3^y )+3 =0  or (3^y )^2 −3.3^y −3^y +3 =0  or 3^y (3^y −3)−1(3^y −3)=0  or (3^y −3)(3^y −1)=0  ∴3^y −1 =0    or  3^y −3 =0  either y=0  or y=1  when y=0 then from (1)    3^x  +3^0 =4  or 3^x +1=4  or 3^x =3  or x=1      if y=1  then from (1)  3^x +3^1 =4  or 3^x =1=3^0   x=0  So x=0 when y=1   and     x=1 when y=0✓
$$\mathrm{3}^{{x}} +\mathrm{3}^{{y}} =\mathrm{4}\:…\:\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{−{x}} +\mathrm{3}^{−{y}} =\frac{\mathrm{4}}{\mathrm{3}}\:…\left(\mathrm{2}\right) \\ $$$${from}\:\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{\mathrm{3}^{{x}} }+\frac{\mathrm{1}}{\mathrm{3}^{{y}} }=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${or}\:\frac{\mathrm{1}}{\left(\mathrm{4}−\mathrm{3}^{{y}} \right)}+\frac{\mathrm{1}}{\mathrm{3}^{{y}} }=\frac{\mathrm{4}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}^{{x}} +\mathrm{3}^{{y}} =\mathrm{4}\:\therefore\mathrm{3}^{{x}} =\mathrm{4}−\mathrm{3}^{{y}} \right) \\ $$$${or}\:\frac{\mathrm{3}^{{y}} +\mathrm{4}−\mathrm{3}^{{y}} }{\left(\mathrm{4}−\mathrm{3}^{{y}} \right)\mathrm{3}^{{y}} }=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${or}\:\frac{\mathrm{4}}{−\mathrm{3}^{\mathrm{2}{y}} +\mathrm{4}.\mathrm{3}^{{y}} }=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${or}\:−\left(\mathrm{3}^{{y}} \right)^{\mathrm{2}} +\mathrm{4}.\mathrm{3}^{{y}} =\mathrm{3} \\ $$$${or}\:−\left(\mathrm{3}^{{y}} \right)^{\mathrm{2}} +\mathrm{4}.\mathrm{3}^{{y}} −\mathrm{3}=\mathrm{0} \\ $$$${or}\:−\left\{\left(\mathrm{3}^{{y}} \right)^{\mathrm{2}} −\mathrm{4}.\mathrm{3}^{{y}} +\mathrm{3}\right\}=\mathrm{0} \\ $$$${or}\:\left(\mathrm{3}^{{y}} \right)^{\mathrm{2}} −\mathrm{4}.\left(\mathrm{3}^{{y}} \right)+\mathrm{3}\:=\mathrm{0} \\ $$$${or}\:\left(\mathrm{3}^{{y}} \right)^{\mathrm{2}} −\mathrm{3}.\mathrm{3}^{{y}} −\mathrm{3}^{{y}} +\mathrm{3}\:=\mathrm{0} \\ $$$${or}\:\mathrm{3}^{{y}} \left(\mathrm{3}^{{y}} −\mathrm{3}\right)−\mathrm{1}\left(\mathrm{3}^{{y}} −\mathrm{3}\right)=\mathrm{0} \\ $$$${or}\:\left(\mathrm{3}^{{y}} −\mathrm{3}\right)\left(\mathrm{3}^{{y}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\therefore\mathrm{3}^{{y}} −\mathrm{1}\:=\mathrm{0}\:\:\:\:{or}\:\:\mathrm{3}^{{y}} −\mathrm{3}\:=\mathrm{0} \\ $$$${either}\:{y}=\mathrm{0}\:\:{or}\:{y}=\mathrm{1} \\ $$$${when}\:{y}=\mathrm{0}\:{then}\:{from}\:\left(\mathrm{1}\right)\:\:\:\:\mathrm{3}^{{x}} \:+\mathrm{3}^{\mathrm{0}} =\mathrm{4} \\ $$$${or}\:\mathrm{3}^{{x}} +\mathrm{1}=\mathrm{4} \\ $$$${or}\:\mathrm{3}^{{x}} =\mathrm{3} \\ $$$${or}\:{x}=\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$${if}\:{y}=\mathrm{1} \\ $$$${then}\:{from}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{3}^{{x}} +\mathrm{3}^{\mathrm{1}} =\mathrm{4} \\ $$$${or}\:\mathrm{3}^{{x}} =\mathrm{1}=\mathrm{3}^{\mathrm{0}} \\ $$$${x}=\mathrm{0} \\ $$$${So}\:{x}=\mathrm{0}\:{when}\:{y}=\mathrm{1}\:\:\:{and}\:\:\:\:\:{x}=\mathrm{1}\:{when}\:{y}=\mathrm{0}\checkmark \\ $$$$ \\ $$
Answered by golsendro last updated on 20/May/25
  { ((a + b = 4)),((((a+b)/(ab)) = (4/3) ⇒ ab = 3)) :}      { ((a = 1 ∧ b = 3)),((a = 3 ∧ b = 1)) :}
$$\:\begin{cases}{{a}\:+\:{b}\:=\:\mathrm{4}}\\{\frac{{a}+{b}}{{ab}}\:=\:\frac{\mathrm{4}}{\mathrm{3}}\:\Rightarrow\:{ab}\:=\:\mathrm{3}}\end{cases} \\ $$$$\:\:\:\begin{cases}{{a}\:=\:\mathrm{1}\:\wedge\:{b}\:=\:\mathrm{3}}\\{{a}\:=\:\mathrm{3}\:\wedge\:{b}\:=\:\mathrm{1}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *