Menu Close

Let-f-R-2-R-be-defined-by-f-x-y-y-sin-y-1-y-0-y-0-Then-the-integral-1-pi-2-x-0-1-y-sin-1-x-pi-2-f-x-y-dy-dx-correct-upto-three-decimal-places-is-




Question Number 220963 by fantastic last updated on 21/May/25
Let f:R^2 →R be defined by f(x,y)={(y/(sin y_(  1, y=0) )), y≠0  Then the integral (1/π^2 )∫_(x=0) ^1 ∫_(y=sin^(−1) x) ^(π/2) f(x,y)dy dx correct upto three decimal places,is...
$${Let}\:{f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x},{y}\right)=\left\{\frac{{y}}{\underset{\:\:\mathrm{1},\:{y}=\mathrm{0}} {\mathrm{sin}\:{y}}},\:{y}\neq\mathrm{0}\right. \\ $$$${Then}\:{the}\:{integral}\:\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{y}=\mathrm{sin}^{−\mathrm{1}} {x}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x},{y}\right){dy}\:{dx}\:{correct}\:{upto}\:{three}\:{decimal}\:{places},{is}… \\ $$
Answered by MrGaster last updated on 21/May/25
(1/π^2 )∫_0 ^1 ∫_(sin^(−1) x) ^(π/2) (y/(sin y))dy dx  =(1/π^2 )∫_0 ^(π/2) ∫_0 ^(sin y) (y/(sin y))dx dy  =(1/π^2 )∫_0 ^(π/2) y dy  =(1/π^2 )[(y^2 /2)]_0 ^(π/2)   =(1/π^2 )∙(π^2 /8)  =(1/8)≈0.125  (2):=(1/π^2 )∫_0 ^(π/2) ∫_0 ^(sin y) (y/(sin y))dx dy  =(1/π^2 )∫_0 ^(π/2) y sin y∙(1/(sin y))dy  =(1/π^2 )∫_(0 ) ^(π/2) y dy  =(1/π^2 )[(y^2 /2)]_0 ^(π/2)   =(1/π^2 )∙(π^2 /8)  =(1/8)≈0.125
$$\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{sin}^{−\mathrm{1}} {x}} ^{\frac{\pi}{\mathrm{2}}} \frac{{y}}{\mathrm{sin}\:{y}}{dy}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\mathrm{sin}\:{y}} \frac{{y}}{\mathrm{sin}\:{y}}{dx}\:{dy} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {y}\:{dy} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\left[\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\centerdot\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\approx\mathrm{0}.\mathrm{125} \\ $$$$\left(\mathrm{2}\right):=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\mathrm{sin}\:{y}} \frac{{y}}{\mathrm{sin}\:{y}}{dx}\:{dy} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {y}\:\mathrm{sin}\:{y}\centerdot\frac{\mathrm{1}}{\mathrm{sin}\:{y}}{dy} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} {y}\:{dy} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\left[\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\centerdot\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\approx\mathrm{0}.\mathrm{125} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *