Menu Close

1-x-2-y-2-4-2-dxdy-x-rcos-y-rsin-J-rdrd-0-2pi-0-r-r-2-4-2-drd-1-8-0-2pi-d-pi-4-Q-if-0-0-1-x-2-




Question Number 220972 by SdC355 last updated on 21/May/25
∫_(−∞) ^(+∞) ∫_(−∞) ^(+∞)    (1/((x^2 +y^2 +4)^2 )) dxdy  x=rcos(θ)  y=rsin(θ)  ∣∣J∣∣=rdrdθ  ∫_0 ^( 2π) ∫_0 ^( ∞)    (r/((r^2 +4)^2 ))drdθ=(1/8)∫_0 ^( 2π)  dθ=(π/4)  Q. if ∫_0 ^( ∞) ∫_0 ^( ∞)    (1/((x^2 +y^2 +4)^2 )) dxdy  0≤r<∞ , 0≤θ≤(π/2).....???  I really confuse how could  i select interval of integral
$$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid={r}\mathrm{d}{r}\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{{r}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\mathrm{d}{r}\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\mathrm{d}\theta=\frac{\pi}{\mathrm{4}} \\ $$$${Q}.\:\mathrm{if}\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathrm{0}\leq{r}<\infty\:,\:\mathrm{0}\leq\theta\leq\frac{\pi}{\mathrm{2}}…..??? \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{confuse}\:\mathrm{how}\:\mathrm{could}\:\:\mathrm{i}\:\mathrm{select}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{integral} \\ $$
Commented by Frix last updated on 21/May/25
∫_(−∞) ^(+∞)  ∫_(−∞) ^(+∞) (1/((x^2 +y^2 +4)^2 ))dxdy=  =4∫_0 ^(+∞)  ∫_0 ^(+∞) (1/((x^2 +y^2 +4)^2 ))dxdy=  =4∫_0 ^(π/2)  ∫_0 ^(+∞) (r/((r^2 +4)^2 ))drdθ  I think of it as a quarter circle...
$$\underset{−\infty} {\overset{+\infty} {\int}}\:\underset{−\infty} {\overset{+\infty} {\int}}\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }{dxdy}= \\ $$$$=\mathrm{4}\underset{\mathrm{0}} {\overset{+\infty} {\int}}\:\underset{\mathrm{0}} {\overset{+\infty} {\int}}\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }{dxdy}= \\ $$$$=\mathrm{4}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\underset{\mathrm{0}} {\overset{+\infty} {\int}}\frac{{r}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }{drd}\theta \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{of}\:\mathrm{it}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quarter}\:\mathrm{circle}… \\ $$
Commented by SdC355 last updated on 22/May/25
hmmm thx∼
$$\mathrm{hmmm}\:\mathrm{thx}\sim \\ $$
Answered by Mathspace last updated on 22/May/25
la fonction f(x,y)=(1/((x^2 +y^2 +4)^2 ))  verifie f(−x,−y)=f(x,y) ⇒  ∫∫_R^2   ((dxdy)/((x^2 +y^2 +4)^2 ))dx=4∫∫_([0,+∞[^2 ) ((dxdy)/((x^2 +y^2 +4)^2 ))  le changement x=rcosθ et y=rsinθ donne  r>0 et θ∈[0,(π/2)] ⇒  I=4∫_0 ^(π/2) ∫_0 ^(+∞) (1/((r^2 +4)^2 )) r dr dθ  =2π∫_0 ^∞ ((rdr)/((r^2 +4)^2 ))=2π×[−(1/2)(1/(r^2 +4))]_0 ^(+∞)   =π((1/4)−0)=(π/4)
$${la}\:{fonction}\:{f}\left({x},{y}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} } \\ $$$${verifie}\:{f}\left(−{x},−{y}\right)={f}\left({x},{y}\right)\:\Rightarrow \\ $$$$\int\int_{{R}^{\mathrm{2}} } \:\frac{{dxdy}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }{dx}=\mathrm{4}\int\int_{\left[\mathrm{0},+\infty\left[^{\mathrm{2}} \right.\right.} \frac{{dxdy}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} } \\ $$$${le}\:{changement}\:{x}={rcos}\theta\:{et}\:{y}={rsin}\theta\:{donne} \\ $$$${r}>\mathrm{0}\:{et}\:\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:\Rightarrow \\ $$$${I}=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:{r}\:{dr}\:{d}\theta \\ $$$$=\mathrm{2}\pi\int_{\mathrm{0}} ^{\infty} \frac{{rdr}}{\left({r}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }=\mathrm{2}\pi×\left[−\frac{\mathrm{1}}{\mathrm{2}}\frac{\mathrm{1}}{{r}^{\mathrm{2}} +\mathrm{4}}\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\pi\left(\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{0}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *