Menu Close

Let-a-b-c-be-positive-reals-such-that-abc-1-prove-that-1-a-3-b-c-1-b-3-c-a-1-c-3-a-b-3-2-




Question Number 220987 by fantastic last updated on 21/May/25
Let a,b,c be positive reals such that abc=1.prove that  (1/(a^3 (b+c)))+(1/(b^3 (c+a)))+(1/(c^3 (a+b)))≥(3/2)
$${Let}\:{a},{b},{c}\:{be}\:{positive}\:{reals}\:{such}\:{that}\:{abc}=\mathrm{1}.{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} \left({b}+{c}\right)}+\frac{\mathrm{1}}{{b}^{\mathrm{3}} \left({c}+{a}\right)}+\frac{\mathrm{1}}{{c}^{\mathrm{3}} \left({a}+{b}\right)}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Answered by mr W last updated on 21/May/25
=((abc)/(a^3 (b+c)))+((abc)/(b^3 (c+a)))+((abc)/(c^3 (a+b)))  =((((1/a))^2 )/((1/b)+(1/c)))+((((1/b))^2 )/((1/c)+(1/a)))+((((1/c))^2 )/((1/a)+(1/b)))  ≥((((1/a)+(1/b)+(1/c))^2 )/(2((1/a)+(1/b)+(1/c))))=(((1/a)+(1/b)+(1/c))/2)  ≥(1/2)×3((1/(abc)))^(1/3) =(3/2)
$$=\frac{{abc}}{{a}^{\mathrm{3}} \left({b}+{c}\right)}+\frac{{abc}}{{b}^{\mathrm{3}} \left({c}+{a}\right)}+\frac{{abc}}{{c}^{\mathrm{3}} \left({a}+{b}\right)} \\ $$$$=\frac{\left(\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}}+\frac{\left(\frac{\mathrm{1}}{{b}}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{{c}}+\frac{\mathrm{1}}{{a}}}+\frac{\left(\frac{\mathrm{1}}{{c}}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}} \\ $$$$\geqslant\frac{\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)^{\mathrm{2}} }{\mathrm{2}\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)}=\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}}{\mathrm{2}} \\ $$$$\geqslant\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{abc}}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *