Menu Close

If-V-be-a-function-of-x-and-y-prove-that-2-V-x-2-2-V-y-2-2-V-r-2-1-r-V-r-1-r-2-2-V-2-where-x-r-cos-y-rsin-




Question Number 221044 by fantastic last updated on 23/May/25
If V be a function of x and y, prove that  (∂^2 V/∂x^2 )+(∂^2 V/∂y^2 )=(∂^2 V/∂r^2 )+(1/r) (∂V/∂r)+(1/r^2 ) (∂^2 V/∂θ^2 ),  where x=r cos θ , y=rsin θ
$${If}\:{V}\:{be}\:{a}\:{function}\:{of}\:{x}\:{and}\:{y},\:{prove}\:{that} \\ $$$$\frac{\partial^{\mathrm{2}} {V}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {V}}{\partial{y}^{\mathrm{2}} }=\frac{\partial^{\mathrm{2}} {V}}{\partial{r}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}}\:\frac{\partial{V}}{\partial{r}}+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial^{\mathrm{2}} {V}}{\partial\theta^{\mathrm{2}} }, \\ $$$${where}\:{x}={r}\:\mathrm{cos}\:\theta\:,\:{y}={r}\mathrm{sin}\:\theta \\ $$
Commented by SdC355 last updated on 23/May/25
https://ghebook.blogspot.com/2011/07/spherical-coordinate-system.html?m=1

Leave a Reply

Your email address will not be published. Required fields are marked *