Menu Close

Prove-x-IR-n-IN-pi-2-0-ch-2xt-cos-2n-t-dt-e-x-2-n-pi-2-0-cos-2n-t-dt-




Question Number 221103 by Jgrads last updated on 24/May/25
Prove :     ∀x∈IR, ∀n∈IN^∗    ∫^( (π/2)) _( 0) ch(2xt)cos^(2n) (t) dt ≤ e^(x^2 /n) ∫^( (π/2)) _( 0) cos^(2n) (t) dt
$$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *