Question Number 221103 by Jgrads last updated on 24/May/25

$$\mathrm{Prove}\::\:\:\:\:\:\forall\mathrm{x}\in\mathrm{IR},\:\forall\mathrm{n}\in\mathrm{IN}^{\ast} \: \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ch}\left(\mathrm{2xt}\right)\mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt}\:\leqslant\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}} \underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2n}} \left(\mathrm{t}\right)\:\mathrm{dt} \\ $$