Menu Close

f-x-x-x-1-f-f-f-f-x-




Question Number 221154 by gregori last updated on 25/May/25
 f(x)= (x/(∣ x ∣ + 1))    f(f(f(f(x)))) =?
$$\:{f}\left({x}\right)=\:\frac{{x}}{\mid\:{x}\:\mid\:+\:\mathrm{1}} \\ $$$$\:\:{f}\left({f}\left({f}\left({f}\left({x}\right)\right)\right)\right)\:=? \\ $$
Commented by Frix last updated on 25/May/25
(x/(4∣x∣+1))  f_1 (x)=(x/(∣x∣+1))  ∀n∈N∧n>1: f_n (x)=f_1 (f_(n−1) (x))=(x/(n∣x∣+1))
$$\frac{{x}}{\mathrm{4}\mid{x}\mid+\mathrm{1}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\frac{{x}}{\mid{x}\mid+\mathrm{1}} \\ $$$$\forall{n}\in\mathbb{N}\wedge{n}>\mathrm{1}:\:{f}_{{n}} \left({x}\right)={f}_{\mathrm{1}} \left({f}_{{n}−\mathrm{1}} \left({x}\right)\right)=\frac{{x}}{{n}\mid{x}\mid+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *