Menu Close

Question-221117




Question Number 221117 by mr W last updated on 25/May/25
Commented by mr W last updated on 25/May/25
find shaded area =?
$${find}\:{shaded}\:{area}\:=? \\ $$
Answered by fantastic last updated on 25/May/25
Commented by fantastic last updated on 25/May/25
We have to find (1/2){(x+y)((√(36−x^2 ))+y)−x((√(36−x^2 )))  or=((xy)/2)+(y^2 /2)+((y(√(36−x^2 )))/2)  Now OD=((√(36−x^2 ))+y) (O is the right angle vertex)  but OD=(√(64−(x+y)^2 ))  so ((√(36−x^2 ))+y)=(√(64−(x+y)^2 ))  or 36−x^2 +y^2 +2y(√(36−x^2 ))=64−x^2 −y^2 −2xy  or 2y^2 +2xy +2y(√(36−x^2 ))=64−36=28  or y^2 +xy+y(√(36−x^2 ))=14  or (y^2 /2)+((xy)/2)+((y(√(36−x^2 )))/2)=7  so the area is 7 sq.unit
$${We}\:{have}\:{to}\:{find}\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\left({x}+{y}\right)\left(\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }+{y}\right)−{x}\left(\sqrt{\left.\mathrm{36}−{x}^{\mathrm{2}} \right)}\right.\right. \\ $$$${or}=\frac{{xy}}{\mathrm{2}}+\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+\frac{{y}\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${Now}\:{OD}=\left(\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }+{y}\right)\:\left({O}\:{is}\:{the}\:{right}\:{angle}\:{vertex}\right) \\ $$$${but}\:{OD}=\sqrt{\mathrm{64}−\left({x}+{y}\right)^{\mathrm{2}} } \\ $$$${so}\:\left(\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }+{y}\right)=\sqrt{\mathrm{64}−\left({x}+{y}\right)^{\mathrm{2}} } \\ $$$${or}\:\mathrm{36}−\cancel{{x}^{\mathrm{2}} }+{y}^{\mathrm{2}} +\mathrm{2}{y}\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }=\mathrm{64}−\cancel{{x}^{\mathrm{2}} }−{y}^{\mathrm{2}} −\mathrm{2}{xy} \\ $$$${or}\:\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}{xy}\:+\mathrm{2}{y}\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }=\mathrm{64}−\mathrm{36}=\mathrm{28} \\ $$$${or}\:{y}^{\mathrm{2}} +{xy}+{y}\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }=\mathrm{14} \\ $$$${or}\:\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+\frac{{xy}}{\mathrm{2}}+\frac{{y}\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }}{\mathrm{2}}=\mathrm{7} \\ $$$${so}\:{the}\:{area}\:{is}\:\mathrm{7}\:{sq}.{unit} \\ $$
Commented by Rasheed.Sindhi last updated on 25/May/25
fantastic!
$${fantastic}! \\ $$
Answered by Frix last updated on 25/May/25
AB=CD=x  (1)     a^2 +b^2 =64  (2)     (a−x)^2 +(b−x)^2 =36  Shaded area  A=((ab)/2)−(((a−x)(b−x))/2)=(((a+b)x−x^2 )/2)  (1)     a^2 +b^2 =64  (2)     (a+b)x−x^2 =(((a^2 +b^2 )−36)/2)=2A=14  A=7
$${AB}={CD}={x} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{64} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\left({a}−{x}\right)^{\mathrm{2}} +\left({b}−{x}\right)^{\mathrm{2}} =\mathrm{36} \\ $$$$\mathrm{Shaded}\:\mathrm{area} \\ $$$$\mathrm{A}=\frac{{ab}}{\mathrm{2}}−\frac{\left({a}−{x}\right)\left({b}−{x}\right)}{\mathrm{2}}=\frac{\left({a}+{b}\right){x}−{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{64} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\left({a}+{b}\right){x}−{x}^{\mathrm{2}} =\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\mathrm{36}}{\mathrm{2}}=\mathrm{2}{A}=\mathrm{14} \\ $$$${A}=\mathrm{7} \\ $$
Commented by Rasheed.Sindhi last updated on 25/May/25
sir,  ∨. Ni⊂∈!
$$\mathrm{sir},\:\:\vee.\:\mathbb{N}\boldsymbol{\mathrm{i}}\subset\in! \\ $$
Commented by Frix last updated on 25/May/25
��
Answered by mr W last updated on 25/May/25
Commented by mr W last updated on 25/May/25
4× shaded area =8^2 −6^2   shaded area =((8^2 −6^2 )/4)=7 ✓
$$\mathrm{4}×\:{shaded}\:{area}\:=\mathrm{8}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} \\ $$$${shaded}\:{area}\:=\frac{\mathrm{8}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{7}\:\checkmark \\ $$
Commented by fantastic last updated on 25/May/25
Never thought like this!
$${Never}\:{thought}\:{like}\:{this}! \\ $$
Commented by Rasheed.Sindhi last updated on 25/May/25
e^X cellent sir!
$${e}^{\mathcal{X}} {cellent}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *