Menu Close

A-wooden-block-and-a-solid-lead-ball-are-placed-in-a-container-fully-filled-with-water-Now-if-the-lead-ball-is-placed-on-top-of-the-floating-wooden-block-what-is-the-change-in-water-level-in-the-cont




Question Number 221264 by fantastic last updated on 28/May/25
A wooden block and a solid lead ball are   placed in a container fully filled with water  Now if the lead ball is placed on top of the  floating wooden block,what is the change  in water level in the container??
$${A}\:{wooden}\:{block}\:{and}\:{a}\:{solid}\:{lead}\:{ball}\:{are}\: \\ $$$${placed}\:{in}\:{a}\:{container}\:{fully}\:{filled}\:{with}\:{water} \\ $$$${Now}\:{if}\:{the}\:{lead}\:{ball}\:{is}\:{placed}\:{on}\:{top}\:{of}\:{the} \\ $$$${floating}\:{wooden}\:{block},{what}\:{is}\:{the}\:{change} \\ $$$${in}\:{water}\:{level}\:{in}\:{the}\:{container}?? \\ $$
Commented by mr W last updated on 28/May/25
the water level will rise when the  lead ball is placed on the top of the  floating wooden block.
$${the}\:{water}\:{level}\:{will}\:{rise}\:{when}\:{the} \\ $$$${lead}\:{ball}\:{is}\:{placed}\:{on}\:{the}\:{top}\:{of}\:{the} \\ $$$${floating}\:{wooden}\:{block}. \\ $$
Commented by fantastic last updated on 29/May/25
I know that answer but can you please explain me using mathematics
$${I}\:{know}\:{that}\:{answer}\:{but}\:{can}\:{you}\:{please}\:{explain}\:{me}\:{using}\:{mathematics} \\ $$
Commented by mr W last updated on 29/May/25
we don′t need complex mathematical  calculation but only some basic  physics knowledge to understand  the question. the easiest explanation  for me is:  in both cases the bottom of the   container carries the total weight  from the lead ball, the wooden block  and the water. the total weight from  them is both cases the same.  in the first case the lead ball lies   directly on the bottom of container,   so the bottom of the container   carries a part of its weight directly   and the rest weight through water   pressure.    in the second case the bottom of the  container carries the total weight  through water pressure. that means  the water pressure in the second  case must be larger than that in the  first case, i.e. the water level will  rise when the lead ball is moved from  the ground of the container onto   the floating wooden boat.
$${we}\:{don}'{t}\:{need}\:{complex}\:{mathematical} \\ $$$${calculation}\:{but}\:{only}\:{some}\:{basic} \\ $$$${physics}\:{knowledge}\:{to}\:{understand} \\ $$$${the}\:{question}.\:{the}\:{easiest}\:{explanation} \\ $$$${for}\:{me}\:{is}: \\ $$$${in}\:{both}\:{cases}\:{the}\:{bottom}\:{of}\:{the}\: \\ $$$${container}\:{carries}\:{the}\:{total}\:{weight} \\ $$$${from}\:{the}\:{lead}\:{ball},\:{the}\:{wooden}\:{block} \\ $$$${and}\:{the}\:{water}.\:{the}\:{total}\:{weight}\:{from} \\ $$$${them}\:{is}\:{both}\:{cases}\:{the}\:{same}. \\ $$$${in}\:{the}\:{first}\:{case}\:{the}\:{lead}\:{ball}\:{lies}\: \\ $$$${directly}\:{on}\:{the}\:{bottom}\:{of}\:{container},\: \\ $$$${so}\:{the}\:{bottom}\:{of}\:{the}\:{container}\: \\ $$$${carries}\:{a}\:{part}\:{of}\:{its}\:{weight}\:{directly}\: \\ $$$${and}\:{the}\:{rest}\:{weight}\:{through}\:{water}\: \\ $$$${pressure}.\:\: \\ $$$${in}\:{the}\:{second}\:{case}\:{the}\:{bottom}\:{of}\:{the} \\ $$$${container}\:{carries}\:{the}\:{total}\:{weight} \\ $$$${through}\:{water}\:{pressure}.\:{that}\:{means} \\ $$$${the}\:{water}\:{pressure}\:{in}\:{the}\:{second} \\ $$$${case}\:{must}\:{be}\:{larger}\:{than}\:{that}\:{in}\:{the} \\ $$$${first}\:{case},\:{i}.{e}.\:{the}\:{water}\:{level}\:{will} \\ $$$${rise}\:{when}\:{the}\:{lead}\:{ball}\:{is}\:{moved}\:{from} \\ $$$${the}\:{ground}\:{of}\:{the}\:{container}\:{onto}\: \\ $$$${the}\:{floating}\:{wooden}\:{boat}. \\ $$
Commented by mr W last updated on 29/May/25
now the explanation with  mathematical calculation:
$${now}\:{the}\:{explanation}\:{with} \\ $$$${mathematical}\:{calculation}: \\ $$
Commented by mr W last updated on 29/May/25
Commented by mr W last updated on 29/May/25
Commented by fantastic last updated on 29/May/25
thanks sir.I understand it now
$${thanks}\:{sir}.{I}\:{understand}\:{it}\:{now} \\ $$
Commented by mr W last updated on 29/May/25
 determinant ((,(volume),(density)),((water),V_W ,ρ_W ),((wooden block),V_B ,(ρ_B <ρ_W )),((lead ball),V_L ,(ρ_L >ρ_W )))  case 1:  say the volume of the submerged  part of wooden block is V_(BS_1 )   V_(BS_1 ) ρ_W =V_B ρ_B   ⇒V_(BS_1 ) =((ρ_B V_B )/ρ_W )  the lead ball is completely submerged  in water.  say the cross−section area of the  container is A, then  h_1 A=V_W +V_L +V_(BS_1 ) =V_W +V_L +(ρ_B /ρ_W )V_B   case 2:  say the volume of the submerged  part of wooden block is V_(BS_2 )   V_(BS_2 ) ρ_W =V_B ρ_B +V_L ρ_L   ⇒V_(BS_2 ) =((V_B ρ_B +V_L ρ_L )/ρ_W )  h_2 A=V_W +V_(BS_2 ) =V_W +((V_B ρ_B +V_L ρ_L )/ρ_W )           =V_W +(ρ_L /ρ_W )V_L +(ρ_B /ρ_W )V_B            >V_W +V_L +(ρ_B /ρ_W )V_B =h_1 A  ⇒h_2 >h_1   i.e. the water level rises.
$$\begin{array}{|c|c|c|c|}{}&\hline{{volume}}&\hline{{density}}\\{{water}}&\hline{{V}_{{W}} }&\hline{\rho_{{W}} }\\{{wooden}\:{block}}&\hline{{V}_{{B}} }&\hline{\rho_{{B}} <\rho_{{W}} }\\{{lead}\:{ball}}&\hline{{V}_{{L}} }&\hline{\rho_{{L}} >\rho_{{W}} }\\\hline\end{array} \\ $$$$\underline{{case}\:\mathrm{1}:} \\ $$$${say}\:{the}\:{volume}\:{of}\:{the}\:{submerged} \\ $$$${part}\:{of}\:{wooden}\:{block}\:{is}\:{V}_{{BS}_{\mathrm{1}} } \\ $$$${V}_{{BS}_{\mathrm{1}} } \rho_{{W}} ={V}_{{B}} \rho_{{B}} \\ $$$$\Rightarrow{V}_{{BS}_{\mathrm{1}} } =\frac{\rho_{{B}} {V}_{{B}} }{\rho_{{W}} } \\ $$$${the}\:{lead}\:{ball}\:{is}\:{completely}\:{submerged} \\ $$$${in}\:{water}. \\ $$$${say}\:{the}\:{cross}−{section}\:{area}\:{of}\:{the} \\ $$$${container}\:{is}\:{A},\:{then} \\ $$$${h}_{\mathrm{1}} {A}={V}_{{W}} +{V}_{{L}} +{V}_{{BS}_{\mathrm{1}} } ={V}_{{W}} +{V}_{{L}} +\frac{\rho_{{B}} }{\rho_{{W}} }{V}_{{B}} \\ $$$$\underline{{case}\:\mathrm{2}:} \\ $$$${say}\:{the}\:{volume}\:{of}\:{the}\:{submerged} \\ $$$${part}\:{of}\:{wooden}\:{block}\:{is}\:{V}_{{BS}_{\mathrm{2}} } \\ $$$${V}_{{BS}_{\mathrm{2}} } \rho_{{W}} ={V}_{{B}} \rho_{{B}} +{V}_{{L}} \rho_{{L}} \\ $$$$\Rightarrow{V}_{{BS}_{\mathrm{2}} } =\frac{{V}_{{B}} \rho_{{B}} +{V}_{{L}} \rho_{{L}} }{\rho_{{W}} } \\ $$$${h}_{\mathrm{2}} {A}={V}_{{W}} +{V}_{{BS}_{\mathrm{2}} } ={V}_{{W}} +\frac{{V}_{{B}} \rho_{{B}} +{V}_{{L}} \rho_{{L}} }{\rho_{{W}} } \\ $$$$\:\:\:\:\:\:\:\:\:={V}_{{W}} +\frac{\rho_{{L}} }{\rho_{{W}} }{V}_{{L}} +\frac{\rho_{{B}} }{\rho_{{W}} }{V}_{{B}} \\ $$$$\:\:\:\:\:\:\:\:\:>{V}_{{W}} +{V}_{{L}} +\frac{\rho_{{B}} }{\rho_{{W}} }{V}_{{B}} ={h}_{\mathrm{1}} {A} \\ $$$$\Rightarrow{h}_{\mathrm{2}} >{h}_{\mathrm{1}} \\ $$$${i}.{e}.\:{the}\:{water}\:{level}\:{rises}. \\ $$
Commented by mr W last updated on 29/May/25
for the same reason, when heavy  things are thrown from the flooting  boat into the water, the water level  in container will sink.
$${for}\:{the}\:{same}\:{reason},\:{when}\:{heavy} \\ $$$${things}\:{are}\:{thrown}\:{from}\:{the}\:{flooting} \\ $$$${boat}\:{into}\:{the}\:{water},\:{the}\:{water}\:{level} \\ $$$${in}\:{container}\:{will}\:{sink}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *