Menu Close

2-x-4-y-8-z-and-1-2x-1-1-4y-1-6z-24-7-z-




Question Number 221239 by fantastic last updated on 28/May/25
2^x =4^y =8^z   and ((1/(2x))+1(1/(4y))+(1/(6z)))=((24)/7)     z=??
$$\mathrm{2}^{{x}} =\mathrm{4}^{{y}} =\mathrm{8}^{{z}} \:\:{and}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}}+\mathrm{1}\frac{\mathrm{1}}{\mathrm{4}{y}}+\frac{\mathrm{1}}{\mathrm{6}{z}}\right)=\frac{\mathrm{24}}{\mathrm{7}}\:\:\: \\ $$$${z}=?? \\ $$
Answered by Rasheed.Sindhi last updated on 28/May/25
2^x =4^y =8^z   and ((1/(2x))+(1/(4y))+(1/(6z)))=((24)/7)     z=??  2^x =2^(2y) =2^(3z) ⇒x=2y=3z⇒2x=4y=6z  (1/(2x))+(1/(4y))+(1/(6z))=((24)/7)  ⇒(1/(6z))+(1/(6z))+(1/(6z))=((24)/7)       3((1/(6z)))=((24)/7)  (1/(2z))=((24)/7)  2z=(7/(24))  z=(7/(48))
$$\mathrm{2}^{{x}} =\mathrm{4}^{{y}} =\mathrm{8}^{{z}} \:\:{and}\:\left(\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{4}{y}}+\frac{\mathrm{1}}{\mathrm{6}{z}}\right)=\frac{\mathrm{24}}{\mathrm{7}}\:\:\: \\ $$$${z}=?? \\ $$$$\mathrm{2}^{{x}} =\mathrm{2}^{\mathrm{2}{y}} =\mathrm{2}^{\mathrm{3}{z}} \Rightarrow{x}=\mathrm{2}{y}=\mathrm{3}{z}\Rightarrow\mathrm{2}{x}=\mathrm{4}{y}=\mathrm{6}{z} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{4}{y}}+\frac{\mathrm{1}}{\mathrm{6}{z}}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{6}{z}}+\frac{\mathrm{1}}{\mathrm{6}{z}}+\frac{\mathrm{1}}{\mathrm{6}{z}}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\:\:\:\:\:\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{6}{z}}\right)=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{z}}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$$$\mathrm{2}{z}=\frac{\mathrm{7}}{\mathrm{24}} \\ $$$${z}=\frac{\mathrm{7}}{\mathrm{48}} \\ $$
Commented by fantastic last updated on 28/May/25
Right
$${Right} \\ $$
Commented by fantastic last updated on 28/May/25
Thanks Sir
$${Thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *