Menu Close

Find-the-area-of-ABC-sides-are-20-26-and-34-




Question Number 221298 by ajfour last updated on 29/May/25
Find the area of △ABC.  sides are (√(20)), (√(26)). and (√(34)) .
$${Find}\:{the}\:{area}\:{of}\:\bigtriangleup{ABC}. \\ $$$${sides}\:{are}\:\sqrt{\mathrm{20}},\:\sqrt{\mathrm{26}}.\:{and}\:\sqrt{\mathrm{34}}\:. \\ $$
Answered by Ghisom last updated on 29/May/25
area of triangle: Heron′s Formula  area=((√((a+b+c)(a+b−c)(a+c−b)(b+c−a)))/4)  in this case 11
$$\mathrm{area}\:\mathrm{of}\:\mathrm{triangle}:\:\mathrm{Heron}'\mathrm{s}\:\mathrm{Formula} \\ $$$$\mathrm{area}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}+{c}−{b}\right)\left({b}+{c}−{a}\right)}}{\mathrm{4}} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{11} \\ $$
Commented by ajfour last updated on 29/May/25
Commented by ajfour last updated on 29/May/25
yes!
$${yes}! \\ $$
Commented by ajfour last updated on 31/May/25
With help of diagram we see  △=24−4−3−6=11  e.g.  4=(1/2)((√2))(4(√2))
$${With}\:{help}\:{of}\:{diagram}\:{we}\:{see} \\ $$$$\bigtriangleup=\mathrm{24}−\mathrm{4}−\mathrm{3}−\mathrm{6}=\mathrm{11} \\ $$$${e}.{g}.\:\:\mathrm{4}=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}\right)\left(\mathrm{4}\sqrt{\mathrm{2}}\right) \\ $$
Answered by mr W last updated on 29/May/25
cos A=((26+34−20)/(2(√(26×34))))=((10)/( (√(221)))) ⇒sin A=((11)/( (√(221))))  Area=(((√(26×34))×11)/(2×(√(221))))=11
$$\mathrm{cos}\:{A}=\frac{\mathrm{26}+\mathrm{34}−\mathrm{20}}{\mathrm{2}\sqrt{\mathrm{26}×\mathrm{34}}}=\frac{\mathrm{10}}{\:\sqrt{\mathrm{221}}}\:\Rightarrow\mathrm{sin}\:{A}=\frac{\mathrm{11}}{\:\sqrt{\mathrm{221}}} \\ $$$${Area}=\frac{\sqrt{\mathrm{26}×\mathrm{34}}×\mathrm{11}}{\mathrm{2}×\sqrt{\mathrm{221}}}=\mathrm{11} \\ $$
Answered by fantastic last updated on 30/May/25
We can use Heron′s formula to calculate the area
$${We}\:{can}\:{use}\:{Heron}'{s}\:{formula}\:{to}\:{calculate}\:{the}\:{area} \\ $$
Answered by fantastic last updated on 30/May/25
we will use Heron′s formula  (√(s(s−a)(s−b)(s−c)))   where s=((a+b+c)/2) and a,b,c are the side length of the triangle  here s=((((√(20))+(√(26))+(√(34)))/2)).  Calulating this we get 11sq.unit
$${we}\:{will}\:{use}\:{Heron}'{s}\:{formula} \\ $$$$\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\: \\ $$$${where}\:{s}=\frac{{a}+{b}+{c}}{\mathrm{2}}\:{and}\:{a},{b},{c}\:{are}\:{the}\:{side}\:{length}\:{of}\:{the}\:{triangle} \\ $$$${here}\:{s}=\left(\frac{\sqrt{\mathrm{20}}+\sqrt{\mathrm{26}}+\sqrt{\mathrm{34}}}{\mathrm{2}}\right). \\ $$$${Calulating}\:{this}\:{we}\:{get}\:\mathrm{11}{sq}.{unit} \\ $$
Answered by MathematicalUser2357 last updated on 31/May/25
11
$$\mathrm{11} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *