Question Number 221270 by SdC355 last updated on 29/May/25

$${p},{q}\in\mathbb{P}\: \\ $$$$\: \\ $$$$\mathrm{Use}\:\mathrm{prime}\:\mathrm{number}\:{p},{q}\:\mathrm{to}\:\mathrm{find}\:\mathrm{all}\:\mathrm{prime}\:\mathrm{number}\: \\ $$$$\mathrm{represented}\:\mathrm{by}\:{p}^{{q}} +{q}^{{p}} \\ $$
Answered by Frix last updated on 29/May/25

$${n}\in\mathbb{P}\wedge{n}\neq\mathrm{2}\:\Leftrightarrow\:\mathrm{2}\nmid{n} \\ $$$${n}={p}^{{q}} +{q}^{{p}} \wedge\mathrm{2}\nmid{n}\:\Leftrightarrow\:{p}=\mathrm{2} \\ $$$${n}=\mathrm{2}^{{q}} +{q}^{\mathrm{2}} \\ $$$$ \\ $$$${q}=\mathrm{3}\:\Rightarrow\:{n}=\mathrm{17}\in\mathbb{P} \\ $$$$ \\ $$$$\mathrm{All}\:\mathrm{other}\:\mathrm{primes}\:\mathrm{are}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:{q}=\mathrm{6}{k}\pm\mathrm{1} \\ $$$${n}=\mathrm{2}^{\mathrm{6}{k}\pm\mathrm{1}} +\left(\mathrm{6}{k}\pm\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{6}{k}\pm\mathrm{1}} +\mathrm{1}+\mathrm{12}{k}\left(\mathrm{3}{k}\pm\mathrm{1}\right) \\ $$$$\mathrm{Obviously}\:\mathrm{3}\mid\left(\mathrm{12}{k}\left(\mathrm{3}{k}\pm\mathrm{1}\right)\right) \\ $$$$\mathrm{3}\mid\mathrm{2}^{\mathrm{6}{k}\pm\mathrm{1}} +\mathrm{1}\:\mathrm{because}\:\mathrm{2}^{\mathrm{2}{m}+\mathrm{1}} \equiv\mathrm{2mod}\:\mathrm{3} \\ $$$$\Rightarrow \\ $$$$\mathrm{no}\:\mathrm{other}\:\mathrm{solution} \\ $$