Menu Close

Let-a-b-c-be-there-real-numbers-Prove-that-if-sin-a-sin-b-sin-c-2-cos-a-cos-b-cos-c-5-and-sin-a-sin-b-sin-c-3-2-cos-a-pi-6-cos-b-pi-6-cos-c-pi-6-0-




Question Number 221354 by Nicholas666 last updated on 31/May/25
    Let a,b,c be there real numbers,   Prove that if;   sin a + sin b + sin c ≥ 2  ⇒ cos a + cos b + cos c ≤ (√5)            and,   sin a + sin b + sin c ≥ (3/2) ⇒ cos(a−π/6) + cos(b−π/6) + cos(c−π/6) ≥ 0 .
$$ \\ $$$$\:\:\mathrm{Let}\:{a},{b},{c}\:\mathrm{be}\:\mathrm{there}\:\mathrm{real}\:\mathrm{numbers}, \\ $$$$\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}; \\ $$$$\:\mathrm{sin}\:{a}\:+\:\mathrm{sin}\:{b}\:+\:\mathrm{sin}\:{c}\:\geqslant\:\mathrm{2}\:\:\Rightarrow\:\mathrm{cos}\:{a}\:+\:\mathrm{cos}\:{b}\:+\:\mathrm{cos}\:{c}\:\leqslant\:\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{and}, \\ $$$$\:\mathrm{sin}\:{a}\:+\:\mathrm{sin}\:{b}\:+\:\mathrm{sin}\:{c}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow\:\mathrm{cos}\left({a}−\pi/\mathrm{6}\right)\:+\:\mathrm{cos}\left({b}−\pi/\mathrm{6}\right)\:+\:\mathrm{cos}\left({c}−\pi/\mathrm{6}\right)\:\geqslant\:\mathrm{0}\:.\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Commented by vnm last updated on 31/May/25
...+cos(b−π/6)+... ?
$$…+\mathrm{cos}\left({b}−\pi/\mathrm{6}\right)+…\:? \\ $$
Commented by Nicholas666 last updated on 31/May/25
yes
$$\mathrm{yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *