Menu Close

lim-x-3-x-3-1-0-2-3-3-Does-not-exist-4-Undefined-




Question Number 221392 by Davidtim last updated on 02/Jun/25
lim_(x→3) (√(x−3))=?  1) 0  2) 3  3) Does not exist  4) Undefined
$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}=? \\ $$$$\left.\mathrm{1}\right)\:\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{3} \\ $$$$\left.\mathrm{3}\right)\:{Does}\:{not}\:{exist} \\ $$$$\left.\mathrm{4}\right)\:{Undefined} \\ $$
Answered by Frix last updated on 02/Jun/25
lim_(x→3)  (√(x−3)) =^([x=t+3])  lim_(t→0)  (√t)  lim_(t→0^− )  (√t) does not exist  lim_(t→0^+ )  (√t) =0  lim_(t→0^− )  (√t) ≠lim_(t→0^+ )  (√t) ⇒ lim_(t→0)  (√t) does not exist  ⇒  lim_(x→3)  (√(x−3)) does not exist
$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\sqrt{{x}−\mathrm{3}}\:\overset{\left[{x}={t}+\mathrm{3}\right]} {=}\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{t}} \\ $$$$\underset{{t}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\sqrt{{t}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$$$\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt{{t}}\:=\mathrm{0} \\ $$$$\underset{{t}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\sqrt{{t}}\:\neq\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt{{t}}\:\Rightarrow\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{t}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$$$\Rightarrow \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\sqrt{{x}−\mathrm{3}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$
Commented by Davidtim last updated on 02/Jun/25
It is undefined, because;  lim_(x→3^+ ) (√(x−3))=0  lim_(x→0^− ) (√(x−3))DNE in real numbers  ⇒lim_(x→3) (√(x−3))=Undefined
$${It}\:{is}\:{undefined},\:{because}; \\ $$$$\underset{{x}\rightarrow\mathrm{3}^{+} } {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}{DNE}\:{in}\:{real}\:{numbers} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}={Undefined} \\ $$
Commented by Davidtim last updated on 02/Jun/25
It is undefined, because;  lim_(x→3^+ ) (√(x−3))=0  lim_(x→0^− ) (√(x−3))DNE in real numbers  ⇒lim_(x→3) (√(x−3))=Undefined
$${It}\:{is}\:{undefined},\:{because}; \\ $$$$\underset{{x}\rightarrow\mathrm{3}^{+} } {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}{DNE}\:{in}\:{real}\:{numbers} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\sqrt{{x}−\mathrm{3}}={Undefined} \\ $$
Commented by Frix last updated on 02/Jun/25
If it′s undefined it doesn′t exist.  This might be a problem of translating from  different languages to English.
$$\mathrm{If}\:\mathrm{it}'\mathrm{s}\:\mathrm{undefined}\:\mathrm{it}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}. \\ $$$$\mathrm{This}\:\mathrm{might}\:\mathrm{be}\:\mathrm{a}\:\mathrm{problem}\:\mathrm{of}\:\mathrm{translating}\:\mathrm{from} \\ $$$$\mathrm{different}\:\mathrm{languages}\:\mathrm{to}\:\mathrm{English}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *