Menu Close

ex3-prove-f-n-n-2pii-S-f-z-z-n-1-dz-ex4-Let-z-0-be-any-point-interior-to-a-positively-oriented-simple-closed-contour-C-show-that-a-C-dz-z-z-0-2pii-b-




Question Number 221416 by wewji12 last updated on 04/Jun/25
ex3.  prove  f^((n)) (α)=((n!)/(2πi)) ∮_( ∂S)  ((f(z))/((z−α)^(n+1) )) dz  ex4.  Let z_0  be any point interior to a positively  oriented simple closed contour C  show that  a. ∮_C  (dz/(z−z_0 ))=2πi  b. ∮_( C) (dz/((z−z_0 )^(n+1) ))=0 , n∈R^+   ex 5.  Let C be any simple closed contour,  described in the positive sense in the z plane  and write   g(z)= ∮_( C)  ((s^3 +2s)/((s−z)^3 )) ds  show that g(z)=6πi when z is inside C and  that g(z)=0 when z is outside
$$\mathrm{ex3}. \\ $$$$\mathrm{prove} \\ $$$${f}^{\left({n}\right)} \left(\alpha\right)=\frac{{n}!}{\mathrm{2}\pi\boldsymbol{{i}}}\:\oint_{\:\partial{S}} \:\frac{{f}\left({z}\right)}{\left({z}−\alpha\right)^{{n}+\mathrm{1}} }\:\mathrm{d}{z} \\ $$$$\mathrm{ex4}. \\ $$$$\mathrm{Let}\:{z}_{\mathrm{0}} \:\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{interior}\:\mathrm{to}\:\mathrm{a}\:\mathrm{positively} \\ $$$$\mathrm{oriented}\:\mathrm{simple}\:\mathrm{closed}\:\mathrm{contour}\:\mathcal{C} \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$${a}.\:\oint_{{C}} \:\frac{\mathrm{d}{z}}{{z}−{z}_{\mathrm{0}} }=\mathrm{2}\pi\boldsymbol{{i}} \\ $$$$\mathrm{b}.\:\oint_{\:{C}} \frac{\mathrm{d}{z}}{\left({z}−{z}_{\mathrm{0}} \right)^{{n}+\mathrm{1}} }=\mathrm{0}\:,\:{n}\in\mathbb{R}^{+} \\ $$$$\mathrm{ex}\:\mathrm{5}. \\ $$$$\mathrm{Let}\:\mathcal{C}\:\mathrm{be}\:\mathrm{any}\:\mathrm{simple}\:\mathrm{closed}\:\mathrm{contour}, \\ $$$$\mathrm{described}\:\mathrm{in}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{sense}\:\mathrm{in}\:\mathrm{the}\:{z}\:\mathrm{plane} \\ $$$$\mathrm{and}\:\mathrm{write}\: \\ $$$$\mathrm{g}\left({z}\right)=\:\oint_{\:\mathcal{C}} \:\frac{{s}^{\mathrm{3}} +\mathrm{2}{s}}{\left({s}−{z}\right)^{\mathrm{3}} }\:\mathrm{d}{s} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{g}\left({z}\right)=\mathrm{6}\pi\boldsymbol{{i}}\:\mathrm{when}\:{z}\:\mathrm{is}\:\mathrm{inside}\:\mathcal{C}\:\mathrm{and} \\ $$$$\mathrm{that}\:\mathrm{g}\left({z}\right)=\mathrm{0}\:\mathrm{when}\:{z}\:\mathrm{is}\:\mathrm{outside} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *