Menu Close

solve-for-x-2-x-4-x-8-x-




Question Number 221618 by fantastic last updated on 08/Jun/25
solve for x  2^x +4^x =8^x
$${solve}\:{for}\:{x} \\ $$$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{8}^{{x}} \\ $$
Answered by MathematicalUser2357 last updated on 09/Jun/25
log_2 φ
$$\mathrm{log}_{\mathrm{2}} \phi \\ $$
Answered by fantastic last updated on 08/Jun/25
2^x +4^x =8^x   or (2^x /2^x )+(4^x /2^x )=(8^x /2^x )  or 1+2^x =4^x   or 1+2^x =2^(2x)   let 2^x =u then the equation becomes  1+u=u^2   or u^2 −u−1=0  so u =((−(−1)±(√((−1)^2 −4(1)(−1))))/(2(1)))  or u=((1±(√5))/2)  but 2^x =u  so 2^x =(((1±(√5))/2))  or x=log _2 (((1+(√5))/2))[as ((1−(√5))/2)<0 and the argument must be>0]  so x=log _2 (((1+(√5))/2))
$$\mathrm{2}^{{x}} +\mathrm{4}^{{x}} =\mathrm{8}^{{x}} \\ $$$${or}\:\frac{\mathrm{2}^{{x}} }{\mathrm{2}^{{x}} }+\frac{\mathrm{4}^{{x}} }{\mathrm{2}^{{x}} }=\frac{\mathrm{8}^{{x}} }{\mathrm{2}^{{x}} } \\ $$$${or}\:\mathrm{1}+\mathrm{2}^{{x}} =\mathrm{4}^{{x}} \\ $$$${or}\:\mathrm{1}+\mathrm{2}^{{x}} =\mathrm{2}^{\mathrm{2}{x}} \\ $$$${let}\:\mathrm{2}^{{x}} ={u}\:{then}\:{the}\:{equation}\:{becomes} \\ $$$$\mathrm{1}+{u}={u}^{\mathrm{2}} \\ $$$${or}\:{u}^{\mathrm{2}} −{u}−\mathrm{1}=\mathrm{0} \\ $$$${so}\:{u}\:=\frac{−\left(−\mathrm{1}\right)\pm\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(−\mathrm{1}\right)}}{\mathrm{2}\left(\mathrm{1}\right)} \\ $$$${or}\:{u}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${but}\:\mathrm{2}^{{x}} ={u} \\ $$$${so}\:\mathrm{2}^{{x}} =\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$${or}\:{x}=\mathrm{log}\underset{\mathrm{2}} {\:}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\left[{as}\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}<\mathrm{0}\:{and}\:{the}\:{argument}\:{must}\:{be}>\mathrm{0}\right] \\ $$$${so}\:\underline{\boldsymbol{{x}}=\boldsymbol{\mathrm{log}}\underset{\mathrm{2}} {\:}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)} \\ $$
Answered by Frix last updated on 08/Jun/25
8^x −4^x −2^x =0  2^x =t>0  t^3 −t^2 −t=0  t(t^2 −t−1)=0  t>0 ⇒ t=((1+(√5))/2)  x=((ln ((1+(√5))/2))/(ln 2))=log_2  ((1+(√5))/2)
$$\mathrm{8}^{{x}} −\mathrm{4}^{{x}} −\mathrm{2}^{{x}} =\mathrm{0} \\ $$$$\mathrm{2}^{{x}} ={t}>\mathrm{0} \\ $$$${t}^{\mathrm{3}} −{t}^{\mathrm{2}} −{t}=\mathrm{0} \\ $$$${t}\left({t}^{\mathrm{2}} −{t}−\mathrm{1}\right)=\mathrm{0} \\ $$$${t}>\mathrm{0}\:\Rightarrow\:{t}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}}{\mathrm{ln}\:\mathrm{2}}=\mathrm{log}_{\mathrm{2}} \:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by fantastic last updated on 08/Jun/25
��

Leave a Reply

Your email address will not be published. Required fields are marked *