Question Number 221680 by ajfour last updated on 09/Jun/25

$${I}\:{suspect} \\ $$$$\pi={i}\underset{\boldsymbol{{i}}} {\overset{−\mathrm{1}} {\int}}\frac{\left({z}−\mathrm{1}\right){dz}}{\:{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${someone}\:{please}\:{help}\:{confirm}\:{or}\:{reject}! \\ $$
Commented by fantastic last updated on 09/Jun/25

$${what}\:{application}\:{are}\:{you}\:{using}\:{to}\:{draw}?? \\ $$
Commented by ajfour last updated on 09/Jun/25
https://youtu.be/T6ekucR7wrQ?si=FQQ2CbIeJztx2TKa
uploaded a short question i thought on youtube minutes bsck.
Commented by ajfour last updated on 09/Jun/25

$${Flexible}\:{Whiteboard} \\ $$
Commented by mr W last updated on 09/Jun/25

$$\frac{{ra}}{\mathrm{2}}=\frac{\pi{r}^{\mathrm{2}} }{\mathrm{4}}\Rightarrow\frac{{r}}{{a}}=\frac{\mathrm{2}}{\pi} \\ $$$$\frac{{r}−{r}\:\mathrm{sin}\:\theta}{{r}\:\mathrm{cos}\:\theta}=\frac{{r}}{{a}}=\frac{\mathrm{2}}{\pi} \\ $$$$\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}=\frac{\mathrm{2}}{\pi} \\ $$$$\mathrm{2}\:\mathrm{cos}\:\theta+\pi\:\mathrm{sin}\:\theta=\pi \\ $$$$\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\pi}\right)=\frac{\pi}{\:\sqrt{\pi^{\mathrm{2}} +\mathrm{4}}} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\pi}{\:\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\pi} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{2}}−\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}}{\pi}\approx\mathrm{25}° \\ $$
Answered by wewji12 last updated on 09/Jun/25

$$\int\:\:\:\frac{{z}−\mathrm{1}}{{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{z}= \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{Substitute}\:{z}=\mathrm{tan}\left({t}\right) \\ $$$$\frac{\mathrm{d}{z}}{\mathrm{d}{t}}=\mathrm{sec}^{\mathrm{2}} \left({t}\right)\:\rightarrow\:\mathrm{d}{z}=\mathrm{sec}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t} \\ $$$$\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}\overset{{z}=\mathrm{tan}\left({t}\right)} {=}\sqrt{\mathrm{tan}^{\mathrm{2}} \left({t}\right)+\mathrm{1}}=\mathrm{sec}\left({t}\right) \\ $$$$\int\:\:\:\:\frac{\mathrm{tan}\left({t}\right)−\mathrm{1}}{\mathrm{tan}\left({t}\right)}\centerdot\mathrm{cos}\left({t}\right)\centerdot\mathrm{sec}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t}=\int\:\:\:\frac{\frac{\mathrm{sin}\left({t}\right)}{\mathrm{cos}\left({t}\right)}−\mathrm{1}}{\frac{\mathrm{sin}\left({t}\right)}{\mathrm{cos}\left({t}\right)}}\centerdot\mathrm{cos}\left({t}\right)\mathrm{sec}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t} \\ $$$$\int\:\:\:\:\:\frac{\mathrm{sin}\left({t}\right)−\mathrm{cos}\left({t}\right)}{\mathrm{sin}\left({t}\right)}\centerdot\frac{\mathrm{1}}{\mathrm{cos}\left({t}\right)}\:\mathrm{d}{t}=\int\:\:\left(\mathrm{1}−\frac{\mathrm{cos}\left({t}\right)}{\mathrm{sin}\left({t}\right)}\right)\frac{\mathrm{1}}{\mathrm{cos}\left({t}\right)}\:\mathrm{d}{t} \\ $$$$\int\:\left(\mathrm{sec}\left({t}\right)−\mathrm{csc}\left({t}\right)\right)\mathrm{d}{t} \\ $$$$\mathrm{E}{hhh}…… \\ $$$$\frac{\mathrm{d}\rho}{\mathrm{d}{t}}=\mathrm{sec}^{\mathrm{2}} \left({t}\right)+\mathrm{sec}\left({t}\right)\mathrm{tan}\left({t}\right)\:\rightarrow\:\mathrm{d}\rho=\mathrm{sec}^{\mathrm{2}} \left({t}\right)+\mathrm{sec}\left({t}\right)\mathrm{tan}\left({t}\right)\mathrm{d}{t} \\ $$$$\left(\because\:\:\frac{\left(\mathrm{sec}\left({t}\right)+\mathrm{tan}\left({t}\right)\right)\mathrm{sec}\left({t}\right)}{\mathrm{sec}\left({t}\right)+\mathrm{tan}\left({t}\right)}=\mathrm{sec}\left({t}\right)\right) \\ $$$$\mathrm{and}\:\rho\overset{\mathrm{substitute}} {=}\mathrm{sec}\left({t}\right)+\mathrm{tan}\left({t}\right) \\ $$$$\frac{\mathrm{d}\rho}{\mathrm{d}{t}}=\mathrm{sec}^{\mathrm{2}} \left({t}\right)+\mathrm{sec}\left({t}\right)\mathrm{tan}\left({t}\right)\:\rightarrow\:\mathrm{d}\rho=\mathrm{sec}^{\mathrm{2}} \left({t}\right)+\mathrm{sec}\left({t}\right)\mathrm{tan}\left({t}\right)\mathrm{d}{t} \\ $$$$\int\:\:\frac{\mathrm{d}\rho}{\rho}=\mathrm{ln}\left(\rho\right)+\mathrm{const}\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\centerdot\left({A}\right) \\ $$$$\mathrm{and}\:\:−\int\:\mathrm{csc}\left({t}\right)\mathrm{d}{t}=\mathrm{ln}\left(\mathrm{cot}\left({t}\right)+\mathrm{csc}\left({t}\right)\right) \\ $$$$\therefore\:\mathrm{ln}\left(\mathrm{tan}\left({t}\right)+\mathrm{sec}\left({t}\right)\right)+\mathrm{ln}\left(\mathrm{cot}\left({t}\right)+\mathrm{csc}\left({t}\right)\right)+\mathrm{const} \\ $$$${t}=\mathrm{tan}^{−\mathrm{1}} \left({z}\right) \\ $$$$\mathrm{ln}\left(\mathrm{tan}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)+\mathrm{sec}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)\right)+\mathrm{ln}\left(\mathrm{cot}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)+\mathrm{csc}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)\right) \\ $$$$\mathrm{cot}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)=\frac{\mathrm{1}}{{z}}\:\:,\:\mathrm{csc}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)=\frac{\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}{{z}} \\ $$$$\mathrm{sec}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)=\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}\:,\:\mathrm{tan}\left(\mathrm{tan}^{−\mathrm{1}} \left({z}\right)\right)={z} \\ $$$$\therefore\mathrm{ln}\left(\frac{\mathrm{1}+\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}{{z}}\right)+\mathrm{ln}\left({z}+\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{ln}\left(\frac{\left(\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}+\mathrm{1}\right)\left(\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}+{z}\right)}{{z}}\right) \\ $$$$\therefore\mathrm{ln}\left(\mathrm{1}+\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}\right)−\mathrm{ln}\left({z}\right)+\mathrm{sinh}^{−\mathrm{1}} \left({z}\right)+\mathrm{Const}… \\ $$$$\mathrm{Final}!!!! \\ $$$$\therefore\int_{−\mathrm{1}} ^{\:\boldsymbol{{i}}} =−\boldsymbol{{i}}\pi\:\:\: \\ $$$$\boldsymbol{{i}}\centerdot\left(−\boldsymbol{{i}}\pi\right)=\pi \\ $$$$\mathrm{Siuuuuuuu} \\ $$
Commented by Ghisom last updated on 09/Jun/25

$$\mathrm{complicated}… \\ $$
Commented by fantastic last updated on 09/Jun/25

$${wewji}\:{getting}\:{excited}\:{moment} \\ $$
Commented by wewji12 last updated on 09/Jun/25

$$:\left(\right. \\ $$
Answered by Ghisom last updated on 09/Jun/25
![∫_i ^(−1) ((z−1)/(z(√(z^2 +1))))dz= [t=z+(√(z^2 +1))] =∫_i ^(−1+(√2)) ((t^2 −2t−1)/(t(t−1)(t+1)))dt= =∫_i ^(−1+(√2)) ((1/t)+(1/(t−1))+(1/(t+1)))dt= =[ln ((t(t+1))/(t−1))]_i ^(−1+(√2)) =πi](https://www.tinkutara.com/question/Q221695.png)
$$\underset{\mathrm{i}} {\overset{−\mathrm{1}} {\int}}\frac{{z}−\mathrm{1}}{{z}\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}{dz}= \\ $$$$\:\:\:\:\:\left[{t}={z}+\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\underset{\mathrm{i}} {\overset{−\mathrm{1}+\sqrt{\mathrm{2}}} {\int}}\frac{{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{1}}{{t}\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)}{dt}= \\ $$$$=\underset{\mathrm{i}} {\overset{−\mathrm{1}+\sqrt{\mathrm{2}}} {\int}}\left(\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{t}−\mathrm{1}}+\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}= \\ $$$$=\left[\mathrm{ln}\:\frac{{t}\left({t}+\mathrm{1}\right)}{{t}−\mathrm{1}}\right]_{\mathrm{i}} ^{−\mathrm{1}+\sqrt{\mathrm{2}}} =\pi\mathrm{i} \\ $$