Question Number 221663 by MrGaster last updated on 09/Jun/25

$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{x}^{{k}} \right){dx}=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{23}}}\centerdot\frac{\mathrm{sinh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{6}}}{\mathrm{2}\:\mathrm{cosh}\frac{\sqrt{\mathrm{23}}\pi}{\mathrm{3}}−\mathrm{1}} \\ $$
Commented by MrGaster last updated on 09/Jun/25
It is difficult for me to give an analytical solution to that integral.
Commented by Tawa11 last updated on 09/Jun/25

$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{any}\:\mathrm{correction}\:\mathrm{on}\:\:\:\mathrm{Q221587}?? \\ $$
Commented by Tawa11 last updated on 10/Jun/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$