Menu Close

Prove-0-1-arcsinx-1-x-4-dx-2-pi-2-16-2-pi-8-ln-2-1-2-n-0-n-2n-1-z-0-2n-1-sin-pi-4-2n-1-




Question Number 221770 by MrGaster last updated on 10/Jun/25
Prove:∫_0 ^1 ((arcsinx)/(1+x^4 ))dx=(((√2)π^2 )/(16))−(((√2)π)/8)ln((√2)−1)+2Σ_(n=0) ^∞ (((−)^n )/((2n+1)))∣z_0 ∣^(2n+1) sin((π/4)−(2n+1)β)
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{arcsin}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\frac{\sqrt{\mathrm{2}}\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{8}}\mathrm{ln}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\mid{z}_{\mathrm{0}} \mid^{\mathrm{2}{n}+\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\left(\mathrm{2}{n}+\mathrm{1}\right)\beta\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *