Menu Close

For-n-N-n-3-Prove-0-1-2-lt-p-2n-e-2piip-2-e-4piin-d-gt-0-p-is-a-prime-number-




Question Number 221778 by MrGaster last updated on 10/Jun/25
For ∀n∈N^∗ ,n≥3 Prove:  ∫_0 ^1 (Σ_(2<p≤2n) e^(2πip+α) )^2 e^(−4πinα) dα>0,p is a prime number
$$\mathrm{For}\:\forall{n}\in\boldsymbol{{N}}^{\ast} ,{n}\geq\mathrm{3}\:\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{\mathrm{2}<{p}\leq\mathrm{2}{n}} {\sum}{e}^{\mathrm{2}\pi{ip}+\alpha} \right)^{\mathrm{2}} {e}^{−\mathrm{4}\pi{in}\alpha} {d}\alpha>\mathrm{0},{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *