Menu Close

1-4x-1-4x-2-2-1-8x-2-x-




Question Number 221787 by efronzo1 last updated on 10/Jun/25
  (√((1−4x(√(1−4x^2 )))/2)) = 1−8x^2     x=?
$$\:\:\sqrt{\frac{\mathrm{1}−\mathrm{4x}\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}{\mathrm{2}}}\:=\:\mathrm{1}−\mathrm{8x}^{\mathrm{2}} \\ $$$$\:\:\mathrm{x}=?\: \\ $$
Answered by mr W last updated on 11/Jun/25
1−4x^2 =1−(2x)^2 ≥0   ⇒−1≤2x≤1  let 2x=sin θ with −(π/2)≤θ≤(π/2)  (√((1−2 sin θ cos θ)/2))=1−2 sin^2  θ  (√((1−sin 2θ)/2))=cos 2θ  1−sin 2θ=2 cos^2  2θ  −sin 2θ=cos 4θ  sin (−2θ)=cos 4θ=sin ((π/2)−4θ)  −2θ=(π/2)−4θ or π+2θ=(π/2)−4θ  ⇒θ=(π/4) or θ=−(π/(12))  ⇒x=((sin θ)/2)=((sin (π/4))/2)=((√2)/4) ✓  or  ⇒x=((sin (−(π/(12))))/2)=(((√2)−(√6))/8) ✓
$$\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} =\mathrm{1}−\left(\mathrm{2}{x}\right)^{\mathrm{2}} \geqslant\mathrm{0}\: \\ $$$$\Rightarrow−\mathrm{1}\leqslant\mathrm{2}{x}\leqslant\mathrm{1} \\ $$$${let}\:\mathrm{2}{x}=\mathrm{sin}\:\theta\:{with}\:−\frac{\pi}{\mathrm{2}}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$\sqrt{\frac{\mathrm{1}−\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\mathrm{2}}}=\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}}=\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\theta \\ $$$$−\mathrm{sin}\:\mathrm{2}\theta=\mathrm{cos}\:\mathrm{4}\theta \\ $$$$\mathrm{sin}\:\left(−\mathrm{2}\theta\right)=\mathrm{cos}\:\mathrm{4}\theta=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{4}\theta\right) \\ $$$$−\mathrm{2}\theta=\frac{\pi}{\mathrm{2}}−\mathrm{4}\theta\:{or}\:\pi+\mathrm{2}\theta=\frac{\pi}{\mathrm{2}}−\mathrm{4}\theta \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{4}}\:{or}\:\theta=−\frac{\pi}{\mathrm{12}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{sin}\:\theta}{\mathrm{2}}=\frac{\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:\checkmark \\ $$$${or} \\ $$$$\Rightarrow{x}=\frac{\mathrm{sin}\:\left(−\frac{\pi}{\mathrm{12}}\right)}{\mathrm{2}}=\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{6}}}{\mathrm{8}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *