Menu Close

If-a-and-b-are-whole-numbers-such-a-b-121-then-find-the-value-of-a-1-b-1-




Question Number 221863 by fantastic last updated on 11/Jun/25
If a and b are whole numbers such a^b =121  then find the value of (a−1)^(b+1)
$${If}\:{a}\:{and}\:{b}\:{are}\:{whole}\:{numbers}\:{such}\:{a}^{{b}} =\mathrm{121} \\ $$$${then}\:{find}\:{the}\:{value}\:{of}\:\left({a}−\mathrm{1}\right)^{{b}+\mathrm{1}} \\ $$
Commented by Tawa11 last updated on 11/Jun/25
11^2   =  121  a = 11, b = 2  ∴   (11 − 1)^(2 + 1)   =  10^3   =  1000
$$\mathrm{11}^{\mathrm{2}} \:\:=\:\:\mathrm{121} \\ $$$$\mathrm{a}\:=\:\mathrm{11},\:\mathrm{b}\:=\:\mathrm{2} \\ $$$$\therefore\:\:\:\left(\mathrm{11}\:−\:\mathrm{1}\right)^{\mathrm{2}\:+\:\mathrm{1}} \:\:=\:\:\mathrm{10}^{\mathrm{3}} \:\:=\:\:\mathrm{1000} \\ $$
Answered by Rasheed.Sindhi last updated on 11/Jun/25
a^b =121^1 =11^2   a=121⇒b=1       (a−1)^(b+1) =(121−1)^(1+1) =14400  a=11⇒b=2       (a−1)^(b+1) =(11−1)^(2+1) =10^3 =1000
$${a}^{{b}} =\mathrm{121}^{\mathrm{1}} =\mathrm{11}^{\mathrm{2}} \\ $$$${a}=\mathrm{121}\Rightarrow{b}=\mathrm{1} \\ $$$$\:\:\:\:\:\left({a}−\mathrm{1}\right)^{{b}+\mathrm{1}} =\left(\mathrm{121}−\mathrm{1}\right)^{\mathrm{1}+\mathrm{1}} =\mathrm{14400} \\ $$$${a}=\mathrm{11}\Rightarrow{b}=\mathrm{2} \\ $$$$\:\:\:\:\:\left({a}−\mathrm{1}\right)^{{b}+\mathrm{1}} =\left(\mathrm{11}−\mathrm{1}\right)^{\mathrm{2}+\mathrm{1}} =\mathrm{10}^{\mathrm{3}} =\mathrm{1000} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *