Menu Close

Question-221870




Question Number 221870 by fantastic last updated on 11/Jun/25
Answered by mehdee7396 last updated on 12/Jun/25
S_1 =(1/2)AB×OM    &   S_2 =(1/2)CD×ON  AB=CD  ⇒S_1 +S_2 =(1/2)AB×(OM+ON)=((AB×MN)/2)=16  ⇒S=AB×MN=32
$${S}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{AB}×{OM}\:\:\:\:\&\:\:\:{S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{CD}×{ON} \\ $$$${AB}={CD}\:\:\Rightarrow{S}_{\mathrm{1}} +{S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{AB}×\left({OM}+{ON}\right)=\frac{{AB}×{MN}}{\mathrm{2}}=\mathrm{16} \\ $$$$\Rightarrow{S}={AB}×{MN}=\mathrm{32} \\ $$
Commented by mehdee7396 last updated on 12/Jun/25
Answered by fantastic last updated on 12/Jun/25
Commented by fantastic last updated on 12/Jun/25
PQ ∥AB∥CD.PQ is drawn from O  Both △COD and parallelogram PDCQ have the same base CD   and point O is touching PQ  So △COD=(1/2)□PDCQ  Similarly △AOB=(1/2)□APQB  So □ABCD=□PDCQ+□APQB  =2(△COD+△AOB)  =2×16  =32sq.cm
$${PQ}\:\parallel{AB}\parallel{CD}.{PQ}\:{is}\:{drawn}\:{from}\:{O} \\ $$$${Both}\:\bigtriangleup{COD}\:{and}\:{parallelogram}\:{PDCQ}\:{have}\:{the}\:{same}\:{base}\:{CD}\: \\ $$$${and}\:{point}\:{O}\:{is}\:{touching}\:{PQ} \\ $$$${So}\:\bigtriangleup{COD}=\frac{\mathrm{1}}{\mathrm{2}}\Box{PDCQ} \\ $$$${Similarly}\:\bigtriangleup{AOB}=\frac{\mathrm{1}}{\mathrm{2}}\Box{APQB} \\ $$$${So}\:\Box{ABCD}=\Box{PDCQ}+\Box{APQB} \\ $$$$=\mathrm{2}\left(\bigtriangleup{COD}+\bigtriangleup{AOB}\right) \\ $$$$=\mathrm{2}×\mathrm{16} \\ $$$$=\mathrm{32}{sq}.{cm} \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *