Menu Close

If-log-10-7-a-then-log-10-1-70-




Question Number 221896 by fantastic last updated on 12/Jun/25
If log _(10) 7=a ,then log _(10) ((1/(70)))=?
$${If}\:\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a}\:,{then}\:\mathrm{log}\underset{\mathrm{10}} {\:}\left(\frac{\mathrm{1}}{\mathrm{70}}\right)=? \\ $$
Answered by fantastic last updated on 12/Jun/25
log _(10) 7=a   so 10^a =7   or 70 =10^a .10  =10^((a+1))   So (1/(70))  =(1/(10^((a+1)) ))  =10^(−(a+1))   then   log _(10) ((1/(70)))  =log _(10) 10^(−(a+1))   =−(a+1)log _(10) 10  =−(a+1)×1  =−(a+1)  am I wrong???
$$\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{7}={a} \\ $$$$\:{so}\:\mathrm{10}^{{a}} =\mathrm{7}\: \\ $$$${or}\:\mathrm{70}\:=\mathrm{10}^{{a}} .\mathrm{10} \\ $$$$=\mathrm{10}^{\left({a}+\mathrm{1}\right)} \\ $$$${So}\:\frac{\mathrm{1}}{\mathrm{70}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}^{\left({a}+\mathrm{1}\right)} } \\ $$$$=\mathrm{10}^{−\left({a}+\mathrm{1}\right)} \\ $$$${then} \\ $$$$\:\mathrm{log}\underset{\mathrm{10}} {\:}\left(\frac{\mathrm{1}}{\mathrm{70}}\right) \\ $$$$=\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{10}^{−\left({a}+\mathrm{1}\right)} \\ $$$$=−\left({a}+\mathrm{1}\right)\mathrm{log}\underset{\mathrm{10}} {\:}\mathrm{10} \\ $$$$=−\left({a}+\mathrm{1}\right)×\mathrm{1} \\ $$$$=−\left({a}+\mathrm{1}\right) \\ $$$${am}\:{I}\:{wrong}??? \\ $$
Commented by mahdipoor last updated on 12/Jun/25
nope ,  log(1/(70))=−log70=−(log10+log7)=−(1+a)
$${nope}\:, \\ $$$${log}\frac{\mathrm{1}}{\mathrm{70}}=−{log}\mathrm{70}=−\left({log}\mathrm{10}+{log}\mathrm{7}\right)=−\left(\mathrm{1}+{a}\right) \\ $$
Commented by fantastic last updated on 12/Jun/25
��

Leave a Reply

Your email address will not be published. Required fields are marked *