Menu Close

If-a-b-c-0-then-prove-that-1-x-b-x-c-1-1-x-c-x-a-1-1-x-a-x-b-1-1-




Question Number 222003 by fantastic last updated on 14/Jun/25
If a+b+c=0 then prove that  (1/(x^b +x^(−c) +1))+(1/(x^c +x^(−a) +1))+(1/(x^a +x^(−b) +1))=1
$${If}\:{a}+{b}+{c}=\mathrm{0}\:{then}\:{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{x}^{{b}} +{x}^{−{c}} +\mathrm{1}}+\frac{\mathrm{1}}{{x}^{{c}} +{x}^{−{a}} +\mathrm{1}}+\frac{\mathrm{1}}{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}}=\mathrm{1} \\ $$
Answered by som(math1967) last updated on 15/Jun/25
 (x^c /(x^(b+c) +x^0 +x^c )) +(1/(x^c +x^(b+c) +1))             +(x^(b+c) /(x^(a+b+c) +x^c +x^(b+c) ))  ★  (x^c /(x^c +1+x^(b+c) )) +(1/(x^c +1+x^(b+c) ))+(x^(b+c) /(x^c +1+x^(b+c) ))  =((x^c +1+x^(b+c) )/(x^c +1+x^(b+c) ))=1  ★ a+b+c=0⇒−a=b+c
$$\:\frac{{x}^{{c}} }{{x}^{{b}+{c}} +{x}^{\mathrm{0}} +{x}^{{c}} }\:+\frac{\mathrm{1}}{{x}^{{c}} +{x}^{{b}+{c}} +\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\frac{{x}^{{b}+{c}} }{{x}^{{a}+{b}+{c}} +{x}^{{c}} +{x}^{{b}+{c}} }\:\:\bigstar \\ $$$$\frac{{x}^{{c}} }{{x}^{{c}} +\mathrm{1}+{x}^{{b}+{c}} }\:+\frac{\mathrm{1}}{{x}^{{c}} +\mathrm{1}+{x}^{{b}+{c}} }+\frac{{x}^{{b}+{c}} }{{x}^{{c}} +\mathrm{1}+{x}^{{b}+{c}} } \\ $$$$=\frac{{x}^{{c}} +\mathrm{1}+{x}^{{b}+{c}} }{{x}^{{c}} +\mathrm{1}+{x}^{{b}+{c}} }=\mathrm{1} \\ $$$$\bigstar\:{a}+{b}+{c}=\mathrm{0}\Rightarrow−{a}={b}+{c} \\ $$
Commented by fantastic last updated on 15/Jun/25
��
Commented by Rasheed.Sindhi last updated on 15/Jun/25
∨. ∩i⊂∈!
$$\vee.\:\cap\boldsymbol{\mathrm{i}}\subset\in! \\ $$
Commented by som(math1967) last updated on 15/Jun/25
thank you
$${thank}\:{you} \\ $$
Answered by Rasheed.Sindhi last updated on 16/Jun/25
Another way  c=−a−b  (1/(x^b +x^(a+b) +1))+(1/(x^(−a−b) +x^(−a) +1))+(1/(x^a +x^(−b) +1))  =(1/(x^b +x^(a+b) +1))+(x^a /(x^(−b) +1+x^a ))+(1/(x^a +x^(−b) +1))  =(x^(−b) /(1+x^a +x^(−b) ))+(x^a /(x^(−b) +1+x^a ))+(1/(x^a +x^(−b) +1))  =((x^a +x^(−b) +1)/(x^a +x^(−b) +1))=1(Proved)
$$\mathrm{Another}\:\mathrm{way} \\ $$$${c}=−{a}−{b} \\ $$$$\frac{\mathrm{1}}{{x}^{{b}} +{x}^{{a}+{b}} +\mathrm{1}}+\frac{\mathrm{1}}{{x}^{−{a}−{b}} +{x}^{−{a}} +\mathrm{1}}+\frac{\mathrm{1}}{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{x}^{{b}} +{x}^{{a}+{b}} +\mathrm{1}}+\frac{{x}^{{a}} }{{x}^{−{b}} +\mathrm{1}+{x}^{{a}} }+\frac{\mathrm{1}}{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}} \\ $$$$=\frac{{x}^{−{b}} }{\mathrm{1}+{x}^{{a}} +{x}^{−{b}} }+\frac{{x}^{{a}} }{{x}^{−{b}} +\mathrm{1}+{x}^{{a}} }+\frac{\mathrm{1}}{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}} \\ $$$$=\frac{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}}{{x}^{{a}} +{x}^{−{b}} +\mathrm{1}}=\mathrm{1}\left({Proved}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *