Menu Close

d-2-y-dx-2-y-k-1-x-2-6-x-4-Find-y-x-k-is-constant-




Question Number 221973 by ajfour last updated on 14/Jun/25
(d^2 y/dx^2 )+y=k−(1/x^2 )−(6/x^4 )        Find y(x)    (k is constant).
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{y}={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}^{\mathrm{4}} }\:\:\:\:\:\: \\ $$$${Find}\:{y}\left({x}\right)\:\:\:\:\left({k}\:{is}\:{constant}\right). \\ $$
Answered by mahdipoor last updated on 14/Jun/25
get  y_p =a+(b/x^2 )  ⇒eq: (((6b)/x^4 ))+(a+(b/x^2 ))=k−(1/x^2 )−(6/x^4 )  ⇒a=k    b=−1  get   y=y_p +y_q   ⇒eq:  y_q ^(′′) +y_q =0 ⇒ y_q =Ae^(Bx)  ⇒ Ae^(Bx) (1+B^2 )=0  B=i  ⇒  y=k−(1/x^2 )+Ae^(ix) =k−(1/x^2 )+A(cosx+isinx)
$${get}\:\:{y}_{{p}} ={a}+\frac{{b}}{{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{eq}:\:\left(\frac{\mathrm{6}{b}}{{x}^{\mathrm{4}} }\right)+\left({a}+\frac{{b}}{{x}^{\mathrm{2}} }\right)={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{6}}{{x}^{\mathrm{4}} } \\ $$$$\Rightarrow{a}={k}\:\:\:\:{b}=−\mathrm{1} \\ $$$${get}\:\:\:{y}={y}_{{p}} +{y}_{{q}} \\ $$$$\Rightarrow{eq}:\:\:{y}_{{q}} ^{''} +{y}_{{q}} =\mathrm{0}\:\Rightarrow\:{y}_{{q}} ={Ae}^{{Bx}} \:\Rightarrow\:{Ae}^{{Bx}} \left(\mathrm{1}+{B}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${B}={i} \\ $$$$\Rightarrow \\ $$$${y}={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+{Ae}^{{ix}} ={k}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+{A}\left({cosx}+{isinx}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *