Menu Close

lim-n-1-1-2-2-3-3-n-n-n-1-2-n-2-1-2-n-2-1-12-e-1-4-n-2-Help-i-can-t-Solve-that-lim-n-a-n-




Question Number 222057 by wewji12 last updated on 16/Jun/25
lim_(n→∞)  ((1^1 ×2^2 ×3^3 ......×n^n )/(n^((1/2)n^2 +(1/2)n^2 +(1/(12))) ×e^(−(1/4)n^2 ) ))=???  Help....  i can′t Solve that lim_(n→∞)  a_n ...
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{3}} ……×{n}^{{n}} }{{n}^{\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{12}}} ×{e}^{−\frac{\mathrm{1}}{\mathrm{4}}{n}^{\mathrm{2}} } }=??? \\ $$$$\mathrm{Help}…. \\ $$$$\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{Solve}\:\mathrm{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} … \\ $$
Commented by Frix last updated on 16/Jun/25
n^((1/2)n^2 +(1/2)n^2 +(1/(12))) =n^(n^2 +(1/(12)))  − is this a typo?
$${n}^{\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{12}}} ={n}^{{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{12}}} \:−\:\mathrm{is}\:\mathrm{this}\:\mathrm{a}\:\mathrm{typo}? \\ $$
Commented by wewji12 last updated on 16/Jun/25
Nope it′s not typo....  lim_(n→∞)  ((1^1 ×2^2 ×3^3 ×....×n^n )/(n^((1/2)n^2 +(1/2)n+(1/(12))) ∙e^(−(1/4)n^2 ) )) is right expression
$$\mathrm{Nope}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{typo}…. \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{3}} ×….×{n}^{{n}} }{{n}^{\frac{\mathrm{1}}{\mathrm{2}}{n}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{n}+\frac{\mathrm{1}}{\mathrm{12}}} \centerdot{e}^{−\frac{\mathrm{1}}{\mathrm{4}}{n}^{\mathrm{2}} } }\:\mathrm{is}\:\mathrm{right}\:\mathrm{expression} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *