Menu Close

Question-222076




Question Number 222076 by Tawa11 last updated on 16/Jun/25
Answered by Ghisom last updated on 17/Jun/25
different methods, I like this one:  x=I+f; I∈Z∧f∈R∧0≤f<1  4(I+f)^2 −40I+51=0  solving for f:  f=−I+((√(40I−51))/2)     [ _(f<0 which is not possible)^(the “−”solution leads to) ]  we know 0≤f<1 ⇒  0≤−I+((√(40I−51))/2)<1       −I+((√(40I−51))/2)=0 ⇒ I=(3/2)∨I=((17)/2)       −I+((√(40I−51))/2)=1 ⇒ I=(5/2)∨I=((11)/2)       ⇒  (3/2)≤I<(5/2)∨((11)/2)<I≤((17)/2)  but I∈Z ⇒  2≤I≤2∨6≤I≤8  ⇒  I∈{2, 6, 7, 8}  x=I+f=((√(40I−51))/2)  x∈{((√(29))/2), ((3(√(21)))/2), ((√(229))/2), ((√(269))/2)}
$$\mathrm{different}\:\mathrm{methods},\:\mathrm{I}\:\mathrm{like}\:\mathrm{this}\:\mathrm{one}: \\ $$$${x}={I}+{f};\:{I}\in\mathbb{Z}\wedge{f}\in\mathbb{R}\wedge\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\mathrm{4}\left({I}+{f}\right)^{\mathrm{2}} −\mathrm{40}{I}+\mathrm{51}=\mathrm{0} \\ $$$$\mathrm{solving}\:\mathrm{for}\:{f}: \\ $$$${f}=−{I}+\frac{\sqrt{\mathrm{40}{I}−\mathrm{51}}}{\mathrm{2}}\:\:\:\:\:\left[\:_{{f}<\mathrm{0}\:\mathrm{which}\:\mathrm{is}\:\mathrm{not}\:\mathrm{possible}} ^{\mathrm{the}\:“−''\mathrm{solution}\:\mathrm{leads}\:\mathrm{to}} \right] \\ $$$$\mathrm{we}\:\mathrm{know}\:\mathrm{0}\leqslant{f}<\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{0}\leqslant−{I}+\frac{\sqrt{\mathrm{40}{I}−\mathrm{51}}}{\mathrm{2}}<\mathrm{1} \\ $$$$\:\:\:\:\:−{I}+\frac{\sqrt{\mathrm{40}{I}−\mathrm{51}}}{\mathrm{2}}=\mathrm{0}\:\Rightarrow\:{I}=\frac{\mathrm{3}}{\mathrm{2}}\vee{I}=\frac{\mathrm{17}}{\mathrm{2}} \\ $$$$\:\:\:\:\:−{I}+\frac{\sqrt{\mathrm{40}{I}−\mathrm{51}}}{\mathrm{2}}=\mathrm{1}\:\Rightarrow\:{I}=\frac{\mathrm{5}}{\mathrm{2}}\vee{I}=\frac{\mathrm{11}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\Rightarrow \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}\leqslant{I}<\frac{\mathrm{5}}{\mathrm{2}}\vee\frac{\mathrm{11}}{\mathrm{2}}<{I}\leqslant\frac{\mathrm{17}}{\mathrm{2}} \\ $$$$\mathrm{but}\:{I}\in\mathbb{Z}\:\Rightarrow \\ $$$$\mathrm{2}\leqslant{I}\leqslant\mathrm{2}\vee\mathrm{6}\leqslant{I}\leqslant\mathrm{8} \\ $$$$\Rightarrow \\ $$$${I}\in\left\{\mathrm{2},\:\mathrm{6},\:\mathrm{7},\:\mathrm{8}\right\} \\ $$$${x}={I}+{f}=\frac{\sqrt{\mathrm{40}{I}−\mathrm{51}}}{\mathrm{2}} \\ $$$${x}\in\left\{\frac{\sqrt{\mathrm{29}}}{\mathrm{2}},\:\frac{\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{229}}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{269}}}{\mathrm{2}}\right\} \\ $$
Commented by MathematicalUser2357 last updated on 17/Jun/25
how did you add borderless table determinant (((like)),((this)))
$${how}\:{did}\:{you}\:{add}\:{borderless}\:{table}\begin{matrix}{{like}}\\{{this}}\end{matrix} \\ $$
Commented by Tawa11 last updated on 17/Jun/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 17/Jun/25
say ⌊x⌋=n  x=n+f with 0≤f<1  4(n+f)^2 −40n+51=0  40n−51=4(n+f)^2 ≥4n^2   4n^2 −40n+51≤0  ⇒(3/2)≤n≤((17)/2) ⇒2≤n≤8   ...(i)  40n−51=4(n+f)^2 <4(n+1)^2   4n^2 −32n+55>0  ⇒n<(5/2) ∨ n>((11)/2) ⇒n≤2 ∨ n≥6   ...(ii)  ⇒n=2, 6, 7, 8  x=(√((40n−51)/4))=((√(29))/2), ((3(√(21)))/2), ((√(229))/2), ((√(269))/2)
$${say}\:\lfloor{x}\rfloor={n} \\ $$$${x}={n}+{f}\:{with}\:\mathrm{0}\leqslant{f}<\mathrm{1} \\ $$$$\mathrm{4}\left({n}+{f}\right)^{\mathrm{2}} −\mathrm{40}{n}+\mathrm{51}=\mathrm{0} \\ $$$$\mathrm{40}{n}−\mathrm{51}=\mathrm{4}\left({n}+{f}\right)^{\mathrm{2}} \geqslant\mathrm{4}{n}^{\mathrm{2}} \\ $$$$\mathrm{4}{n}^{\mathrm{2}} −\mathrm{40}{n}+\mathrm{51}\leqslant\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{2}}\leqslant{n}\leqslant\frac{\mathrm{17}}{\mathrm{2}}\:\Rightarrow\mathrm{2}\leqslant{n}\leqslant\mathrm{8}\:\:\:…\left({i}\right) \\ $$$$\mathrm{40}{n}−\mathrm{51}=\mathrm{4}\left({n}+{f}\right)^{\mathrm{2}} <\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{n}^{\mathrm{2}} −\mathrm{32}{n}+\mathrm{55}>\mathrm{0} \\ $$$$\Rightarrow{n}<\frac{\mathrm{5}}{\mathrm{2}}\:\vee\:{n}>\frac{\mathrm{11}}{\mathrm{2}}\:\Rightarrow{n}\leqslant\mathrm{2}\:\vee\:{n}\geqslant\mathrm{6}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{n}=\mathrm{2},\:\mathrm{6},\:\mathrm{7},\:\mathrm{8} \\ $$$${x}=\sqrt{\frac{\mathrm{40}{n}−\mathrm{51}}{\mathrm{4}}}=\frac{\sqrt{\mathrm{29}}}{\mathrm{2}},\:\frac{\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{229}}}{\mathrm{2}},\:\frac{\sqrt{\mathrm{269}}}{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 17/Jun/25
Thanks sir. I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *