Menu Close

Prove-1-sin-3pi-8-2-cos-pi-8-sin-pi-8-2-sin-8pi-9-1-sin-5pi-9-2-3-4sin-pi-9-2-sin-6pi-7-1-sin-4pi-7-4-sin-pi-7-cos-pi-14-




Question Number 222193 by MrGaster last updated on 20/Jun/25
Prove:  (1/(sin(((3π)/8))))=2(cos((π/8))−sin((π/8)))  (2/(sin(((8π)/9))))−(1/(sin(((5π)/9))))=2(√3)+4sin((π/9))  (2/(sin(((6π)/7))))+(1/(sin(((4π)/7))))=4(sin((π/7))+cos((π/(14))))
$$\mathrm{Prove}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)}=\mathrm{2}\left(\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}\right)−\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}\right)\right) \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\left(\frac{\mathrm{8}\pi}{\mathrm{9}}\right)}−\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{9}}\right)}=\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{4sin}\left(\frac{\pi}{\mathrm{9}}\right) \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\left(\frac{\mathrm{6}\pi}{\mathrm{7}}\right)}+\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{7}}\right)}=\mathrm{4}\left(\mathrm{sin}\left(\frac{\pi}{\mathrm{7}}\right)+\mathrm{cos}\left(\frac{\pi}{\mathrm{14}}\right)\right) \\ $$
Answered by som(math1967) last updated on 20/Jun/25
 (1/(sin(((3π)/8))))=((sin(π/2))/(sin(((3π)/8))))=((2sin(π/4)cos(π/4))/(cos((π/2)−((3π)/8))))  =((4sin((π/8))cos((π/8))cos((π/4)))/(cos((π/8))))  =2.2sin((π/8))cos((π/4))  =2{sin((3π)/8) −sin((π/8))}  =2(cos(π/8) −sin(π/8))
$$\:\frac{\mathrm{1}}{{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)}=\frac{{sin}\frac{\pi}{\mathrm{2}}}{{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)}=\frac{\mathrm{2}{sin}\frac{\pi}{\mathrm{4}}{cos}\frac{\pi}{\mathrm{4}}}{{cos}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{3}\pi}{\mathrm{8}}\right)} \\ $$$$=\frac{\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{8}}\right){cos}\left(\frac{\pi}{\mathrm{8}}\right){cos}\left(\frac{\pi}{\mathrm{4}}\right)}{{cos}\left(\frac{\pi}{\mathrm{8}}\right)} \\ $$$$=\mathrm{2}.\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{8}}\right){cos}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\mathrm{2}\left\{{sin}\frac{\mathrm{3}\pi}{\mathrm{8}}\:−{sin}\left(\frac{\pi}{\mathrm{8}}\right)\right\} \\ $$$$=\mathrm{2}\left({cos}\frac{\pi}{\mathrm{8}}\:−{sin}\frac{\pi}{\mathrm{8}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *