Menu Close

Prove-pi-pi-z-sin-z-1-z-1-z-2-3-sin-2-z-dz-2-




Question Number 222275 by Nicholas666 last updated on 21/Jun/25
    Prove ; ∫_(−π) ^( π)  ((z sin(z) )/((1 + z + (√(1 + z^2 )))(√(3 + sin^2 (z))))) dz = ζ(2)
$$ \\ $$$$\:\:\mathrm{Prove}\:;\:\int_{−\pi} ^{\:\pi} \:\frac{{z}\:\mathrm{sin}\left({z}\right)\:}{\left(\mathrm{1}\:+\:{z}\:+\:\sqrt{\mathrm{1}\:+\:{z}^{\mathrm{2}} }\right)\sqrt{\mathrm{3}\:+\:\mathrm{sin}^{\mathrm{2}} \left({z}\right)}}\:{dz}\:=\:\zeta\left(\mathrm{2}\right)\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Answered by MrGaster last updated on 21/Jun/25
I=(1/( (√3)))Σ_(n=0) ^∞  (((−(1/2))),(n) )(1/3^n )∫_(−π) ^π ((zsin^(2n+1) z)/(1+z+(√(1−z^2 ))))dz  =(1/( (√3))) (((−(1/2))),(n) )(1/3^n )∙2∫_0 ^π z sin^(2n+1) zdz  =(1/( (√3)))Σ_(n=0) ^∞  (((−(1/2))),(n) )(1/x^n )∙π∙((4^n (n!)^2 )/((2n+1)!))  =(π/( (√3)))Σ_(n=0) ^∞ (((−1)^n )/(3^n (2n+1)))  =ζ(2)
$${I}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{{n}}\end{pmatrix}\frac{\mathrm{1}}{\mathrm{3}^{{n}} }\int_{−\pi} ^{\pi} \frac{{z}\mathrm{sin}^{\mathrm{2}{n}+\mathrm{1}} {z}}{\mathrm{1}+{z}+\sqrt{\mathrm{1}−{z}^{\mathrm{2}} }}\mathrm{d}{z} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{{n}}\end{pmatrix}\frac{\mathrm{1}}{\mathrm{3}^{{n}} }\centerdot\mathrm{2}\int_{\mathrm{0}} ^{\pi} {z}\:\mathrm{sin}^{\mathrm{2}{n}+\mathrm{1}} {z}\mathrm{d}{z} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{{n}}\end{pmatrix}\frac{\mathrm{1}}{{x}^{{n}} }\centerdot\pi\centerdot\frac{\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{3}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{3}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$=\zeta\left(\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *