Menu Close

Prove-that-1-2-3-n-n-n-1-2-




Question Number 222288 by hardmath last updated on 21/Jun/25
Prove that:  1 + 2 + 3 + ... + n = ((n∙(n + 1))/2)
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:…\:+\:\boldsymbol{\mathrm{n}}\:=\:\frac{\mathrm{n}\centerdot\left(\mathrm{n}\:+\:\mathrm{1}\right)}{\mathrm{2}} \\ $$
Answered by A5T last updated on 21/Jun/25
1+2+3+...+n−2+n−1+n =x  n+n−1+n−2+...+3+2+1=x  ⇒2x=n(n+1) ⇒ x=((n(n+1))/2)
$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}−\mathrm{2}+\mathrm{n}−\mathrm{1}+\mathrm{n}\:=\mathrm{x} \\ $$$$\mathrm{n}+\mathrm{n}−\mathrm{1}+\mathrm{n}−\mathrm{2}+…+\mathrm{3}+\mathrm{2}+\mathrm{1}=\mathrm{x} \\ $$$$\Rightarrow\mathrm{2x}=\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\:\Rightarrow\:\mathrm{x}=\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *