Menu Close

a-3-b-b-3-b-a-b-1-max-




Question Number 222323 by MrGaster last updated on 22/Jun/25
a+3^b =b,3^b ∙a^(b+1)  max=?
$${a}+\mathrm{3}^{{b}} ={b},\mathrm{3}^{{b}} \centerdot{a}^{{b}+\mathrm{1}} \:\mathrm{max}=? \\ $$
Answered by Frix last updated on 22/Jun/25
a=b−3^b   f(b)=3^b (b−3^b )^(b+1)   f(b−1)=(((3b−3−3^b )^b )/3)  3b−3−3^b <0∀b∈R ⇒ f(b−1)∈R ⇔ b∈Z  b=2n: n→+∞ ⇒ f(b−1)→+∞  b=2n+1: n→+∞ ⇒ f(b−1)→−∞  n→−∞ ⇒ f(b−1)→0  ⇒  no maximum exists
$${a}={b}−\mathrm{3}^{{b}} \\ $$$${f}\left({b}\right)=\mathrm{3}^{{b}} \left({b}−\mathrm{3}^{{b}} \right)^{{b}+\mathrm{1}} \\ $$$${f}\left({b}−\mathrm{1}\right)=\frac{\left(\mathrm{3}{b}−\mathrm{3}−\mathrm{3}^{{b}} \right)^{{b}} }{\mathrm{3}} \\ $$$$\mathrm{3}{b}−\mathrm{3}−\mathrm{3}^{{b}} <\mathrm{0}\forall{b}\in\mathbb{R}\:\Rightarrow\:{f}\left({b}−\mathrm{1}\right)\in\mathbb{R}\:\Leftrightarrow\:{b}\in\mathbb{Z} \\ $$$${b}=\mathrm{2}{n}:\:{n}\rightarrow+\infty\:\Rightarrow\:{f}\left({b}−\mathrm{1}\right)\rightarrow+\infty \\ $$$${b}=\mathrm{2}{n}+\mathrm{1}:\:{n}\rightarrow+\infty\:\Rightarrow\:{f}\left({b}−\mathrm{1}\right)\rightarrow−\infty \\ $$$${n}\rightarrow−\infty\:\Rightarrow\:{f}\left({b}−\mathrm{1}\right)\rightarrow\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\mathrm{no}\:\mathrm{maximum}\:\mathrm{exists} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *