Menu Close

For-what-value-of-k-the-roots-of-the-equation-x-2-2x-4x-1-k-1-k-1-will-have-same-value-but-with-opposite-symbol-like-x-a-and-a-i-mean-the-two-valuea-of-x-will-be-this-type-x-2-and-2




Question Number 222299 by fantastic last updated on 22/Jun/25
For what value of  k  the roots of the equation  ((x^2 −2x)/(4x−1))=((k−1)/(k+1))  will have same value but  with opposite symbol(like x=a and −a)  i mean the two valuea of x will be this type  x=2 and −2(both 2 but opposite symbols)
$${For}\:{what}\:{value}\:{of}\:\:{k}\:\:{the}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${will}\:{have}\:{same}\:{value}\:{but}\:\:{with}\:{opposite}\:{symbol}\left({like}\:{x}={a}\:{and}\:−{a}\right) \\ $$$${i}\:{mean}\:{the}\:{two}\:{valuea}\:{of}\:{x}\:{will}\:{be}\:{this}\:{type} \\ $$$${x}=\mathrm{2}\:{and}\:−\mathrm{2}\left({both}\:\mathrm{2}\:{but}\:{opposite}\:{symbols}\right) \\ $$
Answered by mr W last updated on 22/Jun/25
((x^2 −2x)/(4x−1))=((k−1)/(k+1))  x^2 −2(((3k−1)/(k+1)))x+((k−1)/(k+1))=0  ⇒sum of roots=2(((3k−1)/(k+1)))=0   ⇒k=(1/3) ✓
$$\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}}{\mathrm{4}{x}−\mathrm{1}}=\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{3}{k}−\mathrm{1}}{{k}+\mathrm{1}}\right){x}+\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}=\mathrm{0} \\ $$$$\Rightarrow{sum}\:{of}\:{roots}=\mathrm{2}\left(\frac{\mathrm{3}{k}−\mathrm{1}}{{k}+\mathrm{1}}\right)=\mathrm{0}\: \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{3}}\:\checkmark \\ $$
Commented by fantastic last updated on 22/Jun/25
sir how did you get the 2^(nd)  line?  please tell me
$${sir}\:{how}\:{did}\:{you}\:{get}\:{the}\:\mathrm{2}^{{nd}} \:{line}? \\ $$$${please}\:{tell}\:{me} \\ $$
Commented by fantastic last updated on 22/Jun/25
thanks sir
$${thanks}\:{sir} \\ $$
Commented by mr W last updated on 22/Jun/25
x^2 −2x=4x(((k−1)/(k+1)))−((k−1)/(k+1))  x^2 −2[1+2(((k−1)/(k+1)))]x+((k−1)/(k+1))=0  x^2 −2(((3k−1)/(k+1)))x+((k−1)/(k+1))=0
$${x}^{\mathrm{2}} −\mathrm{2}{x}=\mathrm{4}{x}\left(\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}\right)−\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\left[\mathrm{1}+\mathrm{2}\left(\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}\right)\right]{x}+\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\left(\frac{\mathrm{3}{k}−\mathrm{1}}{{k}+\mathrm{1}}\right){x}+\frac{{k}−\mathrm{1}}{{k}+\mathrm{1}}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *