Menu Close

0-f-r-dr-1-0-g-r-dr-1-i-i-F-t-G-t-dt-F-t-0-f-r-e-rt-dr-G-t-0-g-r-e-rt-dr-




Question Number 222356 by wewji12 last updated on 23/Jun/25
∫_0 ^( ∞)  f(r)dr=1 , ∫_0 ^( ∞)  g(r)dr=1  ∫_(−∞i+𝛄) ^(  ∞i+𝛄)  F(t)G(t)dt=??  F(t)=∫_0 ^( ∞)  f(r)e^(−rt) dr , G(t)=∫_0 ^( ∞)  g(r)e^(−rt) dr
$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right)\mathrm{d}{r}=\mathrm{1}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right)\mathrm{d}{r}=\mathrm{1} \\ $$$$\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:{F}\left({t}\right){G}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${F}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({r}\right){e}^{−{rt}} \mathrm{d}{r}\:,\:{G}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$
Answered by MrGaster last updated on 25/Jun/25

Leave a Reply

Your email address will not be published. Required fields are marked *