Menu Close

Question-222404




Question Number 222404 by ajfour last updated on 25/Jun/25
Answered by ajfour last updated on 26/Jun/25
x+y+z=s  xy+yz+zx=k  x^2 +y^2 +z^2 =h  a^2 +b^2 +c^2 =A  x^3 +y^3 +z^3 =u  xyz=t  s^2 =h+2k    ..(1)  2h+λk=A     ...(2)  2s^2 =A−λk+4k  k=((A−2s^2 )/(λ−4))        (i)  λs^2 =λh+2A−4h  h=((λs^2 −2A)/(λ−4))      (ii)  (x+y+z)^3 =s^3 =u+Σ3xy(x+y)+6xyz  as x+y=s−z  s^3 =u+3sΣxy−3t  s^3 =u+3sk−3t       ...(3)  now  sh=u+sk−3t       ...(4)  ■
$${x}+{y}+{z}=\boldsymbol{{s}} \\ $$$${xy}+{yz}+{zx}=\boldsymbol{{k}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\boldsymbol{{h}} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\boldsymbol{{A}} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\boldsymbol{{u}} \\ $$$${xyz}={t} \\ $$$${s}^{\mathrm{2}} ={h}+\mathrm{2}{k}\:\:\:\:..\left(\mathrm{1}\right) \\ $$$$\mathrm{2}{h}+\lambda{k}={A}\:\:\:\:\:…\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{s}^{\mathrm{2}} ={A}−\lambda{k}+\mathrm{4}{k} \\ $$$${k}=\frac{{A}−\mathrm{2}{s}^{\mathrm{2}} }{\lambda−\mathrm{4}}\:\:\:\:\:\:\:\:\left({i}\right) \\ $$$$\lambda{s}^{\mathrm{2}} =\lambda{h}+\mathrm{2}{A}−\mathrm{4}{h} \\ $$$${h}=\frac{\lambda{s}^{\mathrm{2}} −\mathrm{2}{A}}{\lambda−\mathrm{4}}\:\:\:\:\:\:\left({ii}\right) \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{3}} ={s}^{\mathrm{3}} ={u}+\Sigma\mathrm{3}{xy}\left({x}+{y}\right)+\mathrm{6}{xyz} \\ $$$${as}\:{x}+{y}={s}−{z} \\ $$$${s}^{\mathrm{3}} ={u}+\mathrm{3}{s}\Sigma{xy}−\mathrm{3}{t} \\ $$$${s}^{\mathrm{3}} ={u}+\mathrm{3}{sk}−\mathrm{3}{t}\:\:\:\:\:\:\:…\left(\mathrm{3}\right) \\ $$$${now} \\ $$$${sh}={u}+{sk}−\mathrm{3}{t}\:\:\:\:\:\:\:…\left(\mathrm{4}\right) \\ $$$$\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *