Menu Close

Question-222419




Question Number 222419 by ajfour last updated on 26/Jun/25
Commented by ajfour last updated on 26/Jun/25
v^� =5(sin θi^� +cos θj^� )     θ constant.  Find     (Y/T)(θ). Hence θ such that  (Y/T)(θ) is a maximum.  Y is total didplacement along y.  T is the total time taken to cross.      u ∝ (1/w)
$$\bar {{v}}=\mathrm{5}\left(\mathrm{sin}\:\theta\hat {{i}}+\mathrm{cos}\:\theta\hat {{j}}\right)\:\:\:\:\:\theta\:{constant}. \\ $$$${Find}\:\:\:\:\:\frac{{Y}}{{T}}\left(\theta\right).\:{Hence}\:\theta\:{such}\:{that} \\ $$$$\frac{{Y}}{{T}}\left(\theta\right)\:{is}\:{a}\:{maximum}. \\ $$$${Y}\:{is}\:{total}\:{didplacement}\:{along}\:{y}. \\ $$$${T}\:{is}\:{the}\:{total}\:{time}\:{taken}\:{to}\:{cross}. \\ $$$$\:\:\:\:{u}\:\propto\:\frac{\mathrm{1}}{{w}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *