Menu Close

Prove-n-0-1-2-4n-2n-n-2-K-n-1-2n-1-2-192-pi-ILi-4-1-i-2-16-pi-ILi-3-1-i-2-ln-2-15pi-2-8-ln-2-1-2-ln-2-3-148-pi-4-K-n-1-1-3-1-2n-1-




Question Number 222532 by MrGaster last updated on 29/Jun/25
Prove:  Σ_(n=0) ^∞ (1/2^(4n) ) (((2n)),(n) )^2 (K_(n+1) /((2n+1)^2 ))=((192)/π)ILi_4 (((1+i)/2))+((16)/π)ILi_3 (((1+i)/2))ln(2)+((15π^2 )/8)ln(2)+(1/2)ln(2)^3 −((148)/π)β(4),K_n =1+(1/3)+…+(1/(2n−1))
$$\mathrm{Prove}: \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}{n}} }\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \frac{\mathscr{K}_{{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{192}}{\pi}\mathfrak{I}\mathrm{Li}_{\mathrm{4}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)+\frac{\mathrm{16}}{\pi}\mathfrak{I}\mathrm{Li}_{\mathrm{3}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{15}\pi^{\mathrm{2}} }{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)^{\mathrm{3}} −\frac{\mathrm{148}}{\pi}\beta\left(\mathrm{4}\right),\mathscr{K}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\ldots+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *