Menu Close

very-very-crazy-problem-i-am-not-found-what-is-the-result-of-this-integral-1-z-z-h-z-2h-dz-




Question Number 222541 by Nicholas666 last updated on 29/Jun/25
     very very crazy problem,  i am not found   what is the result of this integral;          ∫(1/( (√z) + (√(z−h)) + (√(z−2h)))) dz
$$ \\ $$$$\:\:\:\mathrm{very}\:\mathrm{very}\:\mathrm{crazy}\:\mathrm{problem},\:\:\mathrm{i}\:\mathrm{am}\:\mathrm{not}\:\mathrm{found} \\ $$$$\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{this}\:\mathrm{integral}; \\ $$$$\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\:\sqrt{{z}}\:+\:\sqrt{{z}−{h}}\:+\:\sqrt{{z}−\mathrm{2}{h}}}\:{dz} \\ $$$$ \\ $$
Commented by Ghisom last updated on 29/Jun/25
substituting we get  (√h)∫(dx/( (√(x−1))+(√x)+(√(x+1))))  we had this before.  ∫(dx/( (√(x−1))+(√x)+(√(x+1))))=  =I+J+K+L  I=∫(((x+2)(√(x−1)))/(3x^2 −4))dx  J=∫(x^(3/2) /(3x^2 −4))dx  K=∫(((x−2)(√(x+1)))/(3x^2 −4))dx  L=−2∫(((√(x−1))(√x)(√(x+1)))/(3x^2 −4))dx  I, J, K are easy to solve but L is impossible
$$\mathrm{substituting}\:\mathrm{we}\:\mathrm{get} \\ $$$$\sqrt{{h}}\int\frac{{dx}}{\:\sqrt{{x}−\mathrm{1}}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}} \\ $$$$\mathrm{we}\:\mathrm{had}\:\mathrm{this}\:\mathrm{before}. \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}−\mathrm{1}}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}= \\ $$$$={I}+{J}+{K}+{L} \\ $$$${I}=\int\frac{\left({x}+\mathrm{2}\right)\sqrt{{x}−\mathrm{1}}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$${J}=\int\frac{{x}^{\mathrm{3}/\mathrm{2}} }{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$${K}=\int\frac{\left({x}−\mathrm{2}\right)\sqrt{{x}+\mathrm{1}}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$${L}=−\mathrm{2}\int\frac{\sqrt{{x}−\mathrm{1}}\sqrt{{x}}\sqrt{{x}+\mathrm{1}}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}}{dx} \\ $$$${I},\:{J},\:{K}\:\mathrm{are}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{but}\:{L}\:\mathrm{is}\:\mathrm{impossible} \\ $$
Commented by MathematicalUser2357 last updated on 01/Jul/25
Elliptic func
$$\mathrm{Elliptic}\:\mathrm{func} \\ $$
Commented by Ghisom last updated on 01/Jul/25
show it
$$\mathrm{show}\:\mathrm{it} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *