Menu Close

Question-222546




Question Number 222546 by Tawa11 last updated on 29/Jun/25
Commented by Tawa11 last updated on 29/Jun/25
Find the length AB.
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{AB}. \\ $$
Commented by fantastic last updated on 29/Jun/25
AC=17,AD=25,CD=28 AB=??
$${AC}=\mathrm{17},{AD}=\mathrm{25},{CD}=\mathrm{28}\:{AB}=?? \\ $$
Answered by fantastic last updated on 29/Jun/25
Commented by fantastic last updated on 29/Jun/25
ACBD is a kite  in △ACD and△CBD  AC=CB  DB=DA  CD common  So △ACD≅△CBD(S−S−S)  So ∡ACD=∡BCD  in △ACO and△COB  AC=CB  ∡ACO=∡BCO  CO common  ∴△ACO≅△CBO(S−A−S)  so ∡AOC=∡COB  So AO=OB and∡AOC=90^0 [∡AOC+∡BOC=180^0    or 2∡AOC=180^0  or ∡AOC=90^0 ]  Now  △ACD=(√(s(s−a)(s−b)(s−c)))[s=((a+b+c)/2)]  =(√(35(35−17)(35−25)(35−28)))=210  let AO=x  So (1/2)×28×x=210  or x=15  So AO=15  AB=2×15=30   determinant (((Final Answer AB=30)))
$${ACBD}\:{is}\:{a}\:{kite} \\ $$$${in}\:\bigtriangleup{ACD}\:{and}\bigtriangleup{CBD} \\ $$$${AC}={CB} \\ $$$${DB}={DA} \\ $$$${CD}\:{common} \\ $$$${So}\:\bigtriangleup{ACD}\cong\bigtriangleup{CBD}\left({S}−{S}−{S}\right) \\ $$$${So}\:\measuredangle{ACD}=\measuredangle{BCD} \\ $$$${in}\:\bigtriangleup{ACO}\:{and}\bigtriangleup{COB} \\ $$$${AC}={CB} \\ $$$$\measuredangle{ACO}=\measuredangle{BCO} \\ $$$${CO}\:{common} \\ $$$$\therefore\bigtriangleup{ACO}\cong\bigtriangleup{CBO}\left({S}−{A}−{S}\right) \\ $$$${so}\:\measuredangle{AOC}=\measuredangle{COB} \\ $$$${So}\:{AO}={OB}\:{and}\measuredangle{AOC}=\mathrm{90}^{\mathrm{0}} \left[\measuredangle{AOC}+\measuredangle{BOC}=\mathrm{180}^{\mathrm{0}} \:\:\:{or}\:\mathrm{2}\measuredangle{AOC}=\mathrm{180}^{\mathrm{0}} \:{or}\:\measuredangle{AOC}=\mathrm{90}^{\mathrm{0}} \right] \\ $$$${Now} \\ $$$$\bigtriangleup{ACD}=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\left[{s}=\frac{{a}+{b}+{c}}{\mathrm{2}}\right] \\ $$$$=\sqrt{\mathrm{35}\left(\mathrm{35}−\mathrm{17}\right)\left(\mathrm{35}−\mathrm{25}\right)\left(\mathrm{35}−\mathrm{28}\right)}=\mathrm{210} \\ $$$${let}\:{AO}={x} \\ $$$${So}\:\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{28}×{x}=\mathrm{210} \\ $$$${or}\:{x}=\mathrm{15} \\ $$$${So}\:{AO}=\mathrm{15} \\ $$$${AB}=\mathrm{2}×\mathrm{15}=\mathrm{30} \\ $$$$\begin{array}{|c|}{{Final}\:{Answer}\:{AB}=\mathrm{30}}\\\hline\end{array} \\ $$
Commented by Tawa11 last updated on 29/Jun/25
Sir, I think  s  =  ((a  +  b  +  c)/2)  Thanks sir. I appreciate.
$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{think}\:\:\mathrm{s}\:\:=\:\:\frac{\mathrm{a}\:\:+\:\:\mathrm{b}\:\:+\:\:\mathrm{c}}{\mathrm{2}} \\ $$$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Commented by fantastic last updated on 29/Jun/25
Oh ! sorry
$${Oh}\:!\:{sorry} \\ $$
Answered by fantastic last updated on 29/Jun/25
AB=30
$${AB}=\mathrm{30} \\ $$
Answered by mr W last updated on 29/Jun/25
a=17, b=25, c=28  AB=d=2h  ΔACD=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  ΔACD=((ch)/2)=((cd)/4)  ((cd)/4)=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  ⇒d=((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/c)         =((840)/(28))=30 ✓
$${a}=\mathrm{17},\:{b}=\mathrm{25},\:{c}=\mathrm{28} \\ $$$${AB}={d}=\mathrm{2}{h} \\ $$$$\Delta{ACD}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$$\Delta{ACD}=\frac{{ch}}{\mathrm{2}}=\frac{{cd}}{\mathrm{4}} \\ $$$$\frac{{cd}}{\mathrm{4}}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$$\Rightarrow{d}=\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{{c}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{840}}{\mathrm{28}}=\mathrm{30}\:\checkmark \\ $$
Commented by Tawa11 last updated on 29/Jun/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *