Menu Close

Question-222579




Question Number 222579 by ajfour last updated on 30/Jun/25
Answered by mr W last updated on 30/Jun/25
Commented by mr W last updated on 01/Jul/25
s=(√3)R+(R/(tan (α/2))) ⇒(s/R)=(√3)+(1/(tan (α/2)))  similarly  (s/r)=(√3)+(1/(tan (β/2)))  (R/r)=(((√3)+(1/(tan (β/2))))/( (√3)+(1/(tan (α/2)))))  let t=tan (β/2)  α+β=60°  tan (α/2)=tan (30°−(β/2))=(((1/( (√3)))−t)/(1+(t/( (√3)))))=((1−(√3)t)/( t+(√3)))  (((√3)+(1/t))/( (√3)+((t+(√3))/( 1−(√3)t))))=(R/r)=λ  (2λ−3)t^2 −2(√3)λt+1=0  ⇒t=(((√3)λ−(√(3λ^2 −2λ+3)))/(2λ−3))  (b/a)=tan β=((2t)/(1−t^2 ))  for λ=2:  t=2(√3)−(√(11))  (b/a)=((2(√3)−(√(11)))/(2(√(33))−11))=(1/( (√(11))))≈0.302
$${s}=\sqrt{\mathrm{3}}{R}+\frac{{R}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}\:\Rightarrow\frac{{s}}{{R}}=\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}} \\ $$$${similarly} \\ $$$$\frac{{s}}{{r}}=\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}} \\ $$$$\frac{{R}}{{r}}=\frac{\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}}{\:\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}} \\ $$$${let}\:{t}=\mathrm{tan}\:\frac{\beta}{\mathrm{2}} \\ $$$$\alpha+\beta=\mathrm{60}° \\ $$$$\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\mathrm{tan}\:\left(\mathrm{30}°−\frac{\beta}{\mathrm{2}}\right)=\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}−{t}}{\mathrm{1}+\frac{{t}}{\:\sqrt{\mathrm{3}}}}=\frac{\mathrm{1}−\sqrt{\mathrm{3}}{t}}{\:{t}+\sqrt{\mathrm{3}}} \\ $$$$\frac{\sqrt{\mathrm{3}}+\frac{\mathrm{1}}{{t}}}{\:\sqrt{\mathrm{3}}+\frac{{t}+\sqrt{\mathrm{3}}}{\:\mathrm{1}−\sqrt{\mathrm{3}}{t}}}=\frac{{R}}{{r}}=\lambda \\ $$$$\left(\mathrm{2}\lambda−\mathrm{3}\right){t}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\lambda{t}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\sqrt{\mathrm{3}}\lambda−\sqrt{\mathrm{3}\lambda^{\mathrm{2}} −\mathrm{2}\lambda+\mathrm{3}}}{\mathrm{2}\lambda−\mathrm{3}} \\ $$$$\frac{{b}}{{a}}=\mathrm{tan}\:\beta=\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$${for}\:\lambda=\mathrm{2}: \\ $$$${t}=\mathrm{2}\sqrt{\mathrm{3}}−\sqrt{\mathrm{11}} \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{2}\sqrt{\mathrm{3}}−\sqrt{\mathrm{11}}}{\mathrm{2}\sqrt{\mathrm{33}}−\mathrm{11}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{11}}}\approx\mathrm{0}.\mathrm{302} \\ $$
Commented by ajfour last updated on 01/Jul/25
Yes Sir, remarkable for an answer.
$${Yes}\:{Sir},\:{remarkable}\:{for}\:{an}\:{answer}. \\ $$
Commented by ajfour last updated on 01/Jul/25
https://youtu.be/zAjZiJvKOPk?si=hTaP4tnAAjFSPex6

Leave a Reply

Your email address will not be published. Required fields are marked *