Menu Close

Question-222639




Question Number 222639 by Mingma last updated on 03/Jul/25
Answered by gabthemathguy25 last updated on 03/Jul/25
(1/2)8 cm=4 cm  Slant height = (√(10^2 +4^2 ))=(√(100+16))=(√(116))≈10.77 cm  cos(θ)=((10.77^2 +10.77^2 −8^2 )/(2∙10.77∙10.77))  cos (θ)=((10.77^2 +10.77^2 −8^2 )/(2∙116))=((168)/(232))≈0.724  θ=cos^(−1) (0.724)≈ 43.86°
$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{8}\:{cm}=\mathrm{4}\:{cm} \\ $$$$\mathrm{Slant}\:\mathrm{height}\:=\:\sqrt{\mathrm{10}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }=\sqrt{\mathrm{100}+\mathrm{16}}=\sqrt{\mathrm{116}}\approx\mathrm{10}.\mathrm{77}\:\mathrm{cm} \\ $$$$\mathrm{cos}\left(\theta\right)=\frac{\mathrm{10}.\mathrm{77}^{\mathrm{2}} +\mathrm{10}.\mathrm{77}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }{\mathrm{2}\centerdot\mathrm{10}.\mathrm{77}\centerdot\mathrm{10}.\mathrm{77}} \\ $$$$\mathrm{cos}\:\left(\theta\right)=\frac{\mathrm{10}.\mathrm{77}^{\mathrm{2}} +\mathrm{10}.\mathrm{77}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }{\mathrm{2}\centerdot\mathrm{116}}=\frac{\mathrm{168}}{\mathrm{232}}\approx\mathrm{0}.\mathrm{724} \\ $$$$\theta=\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{0}.\mathrm{724}\right)\approx\:\mathrm{43}.\mathrm{86}° \\ $$
Answered by mr W last updated on 03/Jul/25
Commented by mr W last updated on 03/Jul/25
OA=OB=(8/( (√2)))=4(√2)  AC=(√(10^2 +(4(√2))^2 ))=2(√(33))  cos α=((0.5×AB)/(AC))=(4/(2(√(33))))=(2/( (√(33))))  BD=8 sin α=8×((√(29))/( (√(33))))=((8(√(29)))/( (√(33))))  sin (θ/2)=((OB)/(DB))=((4(√2)×(√(33)))/( 8(√(29))))=(√((33)/(58)))  ⇒θ=2 sin^(−1) (√((33)/(58)))≈97.928°   ✓
$${OA}={OB}=\frac{\mathrm{8}}{\:\sqrt{\mathrm{2}}}=\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${AC}=\sqrt{\mathrm{10}^{\mathrm{2}} +\left(\mathrm{4}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{33}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{0}.\mathrm{5}×{AB}}{{AC}}=\frac{\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{33}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{33}}} \\ $$$${BD}=\mathrm{8}\:\mathrm{sin}\:\alpha=\mathrm{8}×\frac{\sqrt{\mathrm{29}}}{\:\sqrt{\mathrm{33}}}=\frac{\mathrm{8}\sqrt{\mathrm{29}}}{\:\sqrt{\mathrm{33}}} \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\frac{{OB}}{{DB}}=\frac{\mathrm{4}\sqrt{\mathrm{2}}×\sqrt{\mathrm{33}}}{\:\mathrm{8}\sqrt{\mathrm{29}}}=\sqrt{\frac{\mathrm{33}}{\mathrm{58}}} \\ $$$$\Rightarrow\theta=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \sqrt{\frac{\mathrm{33}}{\mathrm{58}}}\approx\mathrm{97}.\mathrm{928}°\:\:\:\checkmark \\ $$
Commented by Mingma last updated on 03/Jul/25
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *